Общая информация » Каталог студенческих работ » ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ » Физика |
04.11.2014, 10:45 | |
Контрольная работа № 1 101. Материальная точка движется по окружности со скоростью меняющейся по закону V = At (А = 4 м/с). Найти тангенциальное аτ,нормальное аn, и полное а ускорения точки в момент времени, когда она сделает первый оборот. 102. Камень брошен с вышки в горизонтальном направлении с начальной скоростью Vо= 10 м/с. Определить скорость V, тангенциальное аτ и нормальное аn ускорения камня в конце второй секунды движения. Сопротивлением воздуха пренебречь. 103. Зависимость пройденного телом пути от времени задается уравнением s = A - Bt + Ct2 + Dt3 (A = 6 м, В = 3 м/с, С = 2 м/с2, D = 1 м/с3 ). Определить для тела в интервале времени от t1 = 1 c до t2 = 4 c: 1) среднюю скорость; 2) среднее ускорение. 104. Материальная точка движется прямолинейно с начальной скоростью V0 = 10 м/с и с постоянным ускорением а = -5 м/с2. Определить, во сколько раз путь DS, пройденный материальной точкой, будет превышать модуль ее перемещения Dr спустя t = 3 с после начала отсчета времени. 105. Диск радиусом R = 20 см, находящийся в состоянии покоя начал вращаться с постоянным угловым ускорением ε = 0,4 рад/с. Найти нормальное аn тангенциальное аτ и полное а ускорения точек на окружности диска в конце третьей секунды после начала движения 106. Тело брошено под углом a = 30° к горизонту со скоростью а = 30 м/с. Каковы будут нормальное аn и тангенциальное аt ускорения тела через время t = 1 с после начала движения? 107. Материальная точка движется по окружности с постоянной угловой скоростью w = p/6 рад/с. Во сколько раз путь DS, пройденный точкой за время t = 4 с, будет больше модуля ее перемещения Dr ? 108. Материальная точка движется в плоскости ХУ, согласно уравнениям Х = А1+В1t+С1t2 и У = А2+В2t+С2t2, где В1 = 7 м/с, С1 = -2 м/с, В2 = -1 м/с, С2 = 0,2 м/с2. Найти скорость и ускорение точки в момент времени t = 5 с. 109.Движение точки по кривой задано уравнениями Х = Аt2 и У = Вt, где А=0,5 м/с , В=2 м/с. Найти уравнение траектории точки , ее скорость V и полное ускорение а в момент времени t =2 с. 110. Точка движется по окружности радиусом R = 30 см с постоянным угловым ускорением e . Определить тангенциальное ускорение аt точки, если известно, что за время t = 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn = 2,7 м/с2. 111. В деревянный шар массой m1 = 2 кг, подвешенный на нити длинной L = 1,8 м, попадает горизонтально летящая пуля массой m2 = 9 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол a = 12°? Размером шара пренебречь. Удар пули считать прямым, центральным. 112. Шар массой m1 = 1 кг движется со скоростью V1 = 4 м/c и сталкивается с покоящимся шаром массой m2 = 3кг. Каковы скорости U1 и U2 шаров после удара? Удар считать абсолютно упругим, прямым, центральным. 113. Два пластелиновых шарика массами m1 = 50 г и m2 = 90 г подвешены на нитях длиной L = 70 см. Первоначально шарики соприкасаются между собой, затем больший шарик отклонили на угол α = 60о и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h на которую поднимутся шарики после удара; 2) энергию ΔТ израсходованную на деформацию шаров при ударе. 114. Неподвижная молекула распадается на два атома, причем масса одного атома в два раза больше массы другого. Найти кинетические энергии Т1 и Т2 атомов, если их суммарная кинетическая энергия Т=0,016 нДж. 115. Определить КПД h неупругого удара бойка массой m1 = 0,5 т, падающего на сваю массой m2 = 120 кг. Полезной считать энергию, затраченную на вбивание сваи. 116. Шар массой m1 = 4 кг движется со скоростью V1 = 5 м/с и сталкивается с шаром массой m2 = 6 кг, который движется ему навстречу со скоростью V2 = 2 м/с. Определить скорости U1 и U2 шаров после удара. Удар считать абсолютно упругим, прямым, центральным. 117. Шар массой m1 = 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40% кинетической энергии. Определить массу m2 большего шара. Удар считать абсолютно упругим, прямым, центральным 118. Шар массой m1 = 5 кг движется со скоростью V1 = 1 м/с и сталкивается с покоящимся шаром массой m2 = 2 кг. Определить скорость U шаров после абсолютно неупругого удара. Найти энергию ΔТ, израсходованную на деформацию шаров при ударе. 119. При разрыве снаряда, летящего со скоростью V = 600 м/с, образовались три равных осколка с равными массами m=12 кг. Суммарная кинетическая энергия всех осколков Т=32 кДж. Какую наибольшую скорость может приобрести один из осколков? Вращением осколков пренебречь. 120. Молотом массой m1 = 5 кг ударяют по небольшому куску железа, лежащего на наковальне массой m2 = 120 кг. Определить КПД η удара. Полезной считать энергию, идущую на деформацию железа. 121. На обод маховика диаметром D = 60 см намотан шнур, к концу которого привязан груз массой m = 2 кг. Определить момент инерции J маховика, если он, вращаясь равноускоренно под действием силы тяжести груза, за время t = 3 с приобрел угловую скорость w = 9 рад/с 122. К шкиву сплошного маховика диаметром D = 75 см и массой m = 40 кг приложена касательная сила F = 1 кН. Определить угловое ускорение e и частоту вращения n маховика через время t = 10 c после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь. 123. На сплошной блок радиусом R = 6 см намотан шнур, к которому привязан груз массой m = 0,5 кг. Опускаясь равноускоренно, груз прошел путь s = 1,5 м за время t = 4 с.Определить момент инерции Ј блока. 124. Нить с привязанными к ее концам грузами массами m1 = 50 г и m2 = 60 г перекинута через блок диаметром D = 4 см. Определить момент инерции J блока, если под действием силы тяжести грузов он получил угловое ускорение e = 1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь. 125. Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению j = Аt+Bt3, где А = 2 рад/с, В = 0,2 рад/с3. Определить вращающий момент М, действующий на стержень через время t = 2 с после начала вращения, если момент инерции стержня J = 0,048 кг×м2. 126.Через блок, имеющий форму диска массой m = 0,4 кг, перекинут шнур, к концам которого подвешены грузы массами m1 = 0,3 кг и m2 = 0,7 кг. Определить силы натяжения Т1 и Т2 шнура по обе стороны блока. Массой шнура пренебречь,трение в оси блока отсутствует. 127. Определить момент силы М, который необходимо приложить к блоку, вращающемуся с частотой n = 12 с-1, чтобы он остановился в течение времени Dt = 8с. Диаметр блока D = 30см. Массу блока m = 6 кг считать равномерно распределенной по ободу. 128. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой - вдоль вертикали вниз. Определить коэффициент f трения между поверхностями груза и стола, если массы каждого груза и масса блока одинаковы и грузы движутся с ускорением а = 3,6 м/с2. Проскальзыванием нити по блоку и силой трения, действующей на блок, пренебречь. 129.На сплошной блок радиусом R = 10 см, момент инерции которого Ј = 0.042 кг·м2, намотана легкая нить, к концу которой прикреплен груз массой m = 0,4 кг. До начала вращения блока высота h груза над полом cоставляла 1,8 м. Определить: 1) силу натяжения нити во время движения; 2) время опускания груза до пола; 3) кинетическую энергию груза в момент удара о пол 130. К концам легкой и нерастяжимой нити, перекинутой через блок, подвешены грузы массами m1 = 0,2 кг и m2 = 0,3 кг. Во сколько раз отличаются силы, действующие на нить по обе стороны от блока, если масса блока m = 0,4 кг. Силами трения и проскальзывания нити по блоку пренебречь. 131. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m = 5 кг каждая. Расстояние от каждой гири до оси скамьи L1= 70 см. Скамья вращается с частотой n1 = 1 с-1. Как изменится частота вращения скамьи и какую работу А произведет человек, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до L2 = 20 см? Момент инерции человека и скамьи (вместе) относительно оси J = 2,5 кг×м2. 132. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью w1 = 4 рад/с. С какой угловой скоростью w2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг×м2. Длина стержня L = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы. 133. Платформа в виде диска диаметром D = 3 м и массой m1 = 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью V = 1,8 м/с относительно платформы. 134. Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол j повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на ) точку? Масса платформы m1 = 280 кг, масса человека m2 = 80 кг. 135. На скамье Жуковского стоит человек и держит в руке за ось велосипедное колесо, вращающееся вокруг своей оси с угловой скоростью w1 = 25 рад/с. Ось колеса расположена вертикально и совпадает с осью скамьи Жуковского. С какой скоростью w2 станет вращаться скамья, если повернуть колесо вокруг горизонтальной оси на угол a = 180°? Момент инерции человека и скамьи равен 2,5 кг×м2, момент инерции колеса J = 0,5 кг×м2. 136. Однородный стержень длиной L = 1,0 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. Определить массу M стержня, если в результате попадания пули он отклонился на угол a = 60°. Принять скорость пули V = 360 м/с. 137. На краю платформы в виде диска, вращающейся по инерции вокруг вертикальной оси с частотой n1 = 8 мин-1, стоит человек массой m1 = 70 кг. Когда человек перешел в центр платформы, она стала вращаться с частотой n2 = 10 мин-1. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки. 138. На краю неподвижной скамьи Жуковского диаметром D = 0,8 м и массой m1 = 6 кг стоит человек массой m2 = 60 кг. С какой угловой скоростью w начнет вращаться скамья, если человек поймает летящий на него мяч массой m = 0,5 кг? Траектория мяча горизонтальна и проходит на расстоянии r = 0,4 м от оси скамьи. Скорость мяча V = 5 м/с. 139. Горизонтальная платформа массой m1 = 150 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n = 8 мин-1. Человек массой m2 = 70 кг стоит при этом на краю платформы. С какой угловой скоростью w начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу круглым, однородным диском, а человека - материальной точкой. 140. Однородный стержень длиной L = 1,0 м и массой M = 0,7 кг подвешен на горизонтальной оси, проходящей через верхний конец стержня. В точку, отстоящую от оси на 2/3 L, абсолютно неупруго ударяет пуля массой m = 10 г, летящая перпендикулярно стержню и его оси. После удара стержень отклонился на угол a = 60°. Определить скорость пули. 141. В баллоне вместимостью V = 15 л находится аргон под давлением р1 = 600 кПа и температуре Т1 = 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до р2 = 400 кПа, а температура установилась Т2 = 260 К. Определить массу m аргона, взятого из баллона. 142. Два сосуда одинакового объема содержат кислород. В одном сосуде давление р1 = 2 МПа и температура Т1 = 800 К, в другом р2 = 2,5 МПа, Т2 = 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры Т = 200 К. Определить установившееся в сосудах давление р. 143. В сосуде объемом V = 10 л при температуре Т = 450 К находится смесь азота массой m=5 г и водорода массой m=2 г. Определить давление Р смеси. . 144. Найти молярные теплоемкости Сv и Ср смеси кислорода массой m1= 2,5 г и азота m2 = 3 г. 145. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул газа, находящегося в сосуде вместимостью V = 3 л под давлением р = 540 кПа. 146. Молярная внутренняя энергия Um некоторого двухатомного газа равна 6,02 кДж/моль. Определить среднюю кинетическую энергию <eвр> вращательного движения одной молекулы этого газа. Газ считать идеальным. 147. Водород массой m = 2 г был нагрет на ΔТ = 100 К при постоянном давлении р. Найти: 1) количество теплоты Q, переданную газу; 2) работу А расширения газа; 3) приращение ΔU внутренней энергии газа. 148. 10 г кислорода находятся в сосуде под давлением р = 300 кПа и при температуре 20 оС. После изобарического нагревания газ занял объем V = 10 л. Найти количество теплоты полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении. 149. При изотермическом расширении 20 г азота, находившегося при температуре 17 оС была совершена работа А = 960 Дж. Во сколько раз изменилось давление газа при расширении ? 150. Кислород массой m = 120 г занимает объем V1= 80 л и находится под давлением Р1= 200 кПа. При нагревании газ расширяется при постоянном давлении до объема V2= 300 л, а затем его давление возросло до Р2= 500 кПа при неизменном объеме. Найти изменение внутренней энергии ΔU газа, совершенную им работу А и теплоту Q, переданную газу. Построить график процесса. 151. Два одинаково заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружают в масло. Какова плотность r масла, если угол расхождения нитей при погружении в масло остается неизменным? Плотность материала шариков r0 = 1,5×103 кг/м3, диэлектрическая проницаемость масла e = 2,2. 152. Три одинаковых точечных заряда Q1 = Q2 = Q3 = 2 нКл находятся в вершинах равностороннего треугольника со сторонами а = 10 см. Определить модуль и направление вектора напряженности Е электрического поля, созданного зарядами в точке, равноудаленной от этих зарядов. 153. Точечные заряды Q1 = 30 мкКл и Q2 = - 20 мкКл находятся на расстоянии d = 20 см друг от друга. Определить напряженность электрического поля Е в точке, удаленной от первого заряда на расстояние r1 = = 30 cм, а от второго - на r2 = 15 см. 154. Тонкий стержень длиной l = 20 см несет равномерно распределенный заряд t = 0,1 мкКл. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке, лежащей на оси стержня на расстоянии а = 20 см от его конца. 155. На расстоянии d = 20 см находятся два точечных заряда Q1 = -50 нКл и Q2 = 100 нКл. Определить силу F, действующую на заряд Q3 = -10 нКл, удаленный от обоих зарядов на одинаковое расстояние, равное d. 156. По тонкому полукольцу радиуса R = 20 см равномерно распределен заряд с линейной плотностью t = 1 мкКл/м. Определить напряженность Е электрического поля, создаваемого распределенным зарядом в точке О, совпадающей с центром полукольца . 157. Тонкий длинный стержень равномерно заряжен с линейной плотностью заряда τ = 10 мкКл/м. На продолжении оси стержня на расстоянии а = 20 см от его конца находится точечный заряд Q = 15 нКл. Определить силу F взаимодействия точечного заряда со стержнем. 158. К бесконечной равномерно заряженной вертикальной плоскости подвешен на нити одноименно заряженный шарик массой m = 60 г и зарядом Q = 0,5 нКл. Сила натяжения нити, на которой висит шарик, F = 0,8 Н. Найти поверхностную плотность заряда σ плоскости. 159. Заряженный медный шарик радиусом R = 0,6 см помещен в масло, плотностью ρ = 0,8·103 кг/м3. Найти заряд Q шарика, если в однородном электрическом поле напряженностью Е = 3,2 МВ/м, направленном вертикально вверх, шарик оказался взвешенным в масле. 160. Поверхностная плотность заряда σ бесконечно протяженной вертикальной плоскости равна 300 мкКл/м2. К плоскости на нити подвешен заряженный шарик массой m = 12 г. Определить заряд Q шарика, если нить образует с плоскостью угол α = 30о. 161. Кольцо радиусом R = 10 см равномерно заряжено с линейной плотностью заряда τ = 600 нКл/м. Определить потенциал φ в точке, расположенной на оси кольца на расстоянии h = 10 см от его центра. 162. Электрон с кинетической энергией Т = 300 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической отрицательно заряженной сферы радиусом R = 15 см.Определить минимальное расстояние а, на которое приблизится электрон к поверхности сферы, если ее заряд Q =-10 нКл. 163. Электрическое поле образовано положительно заряженной длинной нитью с линейной плотностью заряда τ = 0,25 мкКл/м. Какую скорость получит электрон под действием поля, приблизившись к нити с расстояния r1 = 2 cм до расстояния r2 = 0,5 см ? 164.Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость v =105 м/с. Расстояние между пластинами d = 6,8 см. Найти разность потенциалов U между пластинами и поверхностную плотность заряда σ на пластинах конденсатора. 165. Найти потенциальную энергию П системы трех точечных зарядов, расположенных в вершинах равностороннего треугольника со стороной а = 15 см, если Q1 =20 нКл, Q2 = 30 нКл и Q3 =- 15 нКл. 166. Тонкое кольцо радиусом R=10 см имеет равномерно распределенный зард Q1 = 300 нКл. Какую работу надо совершить, чтобы переместить заряд Q2 =5 нКл из центра кольца в точку, расположенную на оси кольца на расстоянии h =30 см от его центра? 167. Тонкое полукольцо заряжено отрицательно с линейной плотностью заряда τ =-140 нКл/м. Какую скорость получит электрон переместившись под действием электрического поля из центра полукольца в бесконечность? 168. Протон, начальная скорость v которого равна 150 км /с влетел в однородное электрическое поле напряженностью Е = 3·103 В/м так, что его вектор скорости совпал с направлением линий напряженности. Какой путь L должен пройти протон, чтобы его скорость удвоилась? 169. Металлический шар радиусом R =5 см заряжен равномерно с поверхностной плотностью заряда σ = 1 мкКл/м2. Шар окружен слоем парафина ( ε = 2,0 ) толщиной d=2 см. Найти потенциал φ электрического поля на расстоянии: 1) r1=1 см ; 2) r2= 6 см; 3) r3=10 см от центра шара. Построить график зависимости φ(r). 170. Электрон влетел в плоский конденсатор со скоростью v =6 Мм/с, направленную параллельно пластинам. Найти скорость электрона при вылете из конденсатора, если расстояние между пластинами d =10 мм, разность потенциалов U = 20 В, длина пластин L = 6 см. 171. Два источника тока с ЭДС E1 = 1,2 В и E2 = 2,6 В и внутренними сопротивлениями r1= 0,5 Ом и r2= 1,1 Ом соответственно соединены, как показано на рис.1.1. Найти разность потенциалов между точками (а) и (б). 172. Два источника тока с ЭДС E 1= 1,2 В и E 2= 2,6 В и внутренними сопротивлениями r1= 0,5 Ом и r2= 1,1 Ом соответственно и резистор R = 10 Ом соединены, как показано на рис.1.2. Найти силы токов в источниках и резисторе. 173. Три батареи с ЭДС E1 = 12 В, E2 = 6 В и E3 = 5 В и одинаковыми внутренними сопротивлениями r равными 2 Ом соединены одинаковыми полюсами. Определить силы токов I , идущих через каждую батарею. 174. При внешнем сопротивлении R1 = 8 Ом сила тока в цепи I1 = 0,8 А, а при сопротивлении R2 = 15 Ом сила тока I2 = 0,5 А. Определить силу тока Iк.з короткого замыкания источника тока. 175. Батареи имеют ЭДС E1 = 2,5 В и E2 = 1,0 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом , сопротивление амперметра RА= 0,5 Ом (рис.1.3). Найти показания амперметра. 176. Два источника тока с ЭДС E1 = 2,0 В и E2 = 1,5 В и внутренними сопротивлениями r1= 0,5 Ом и r2= 1,4 Ом соответственно и резисторы R1= 5 Ом и R2= 0,8 Ом соединены как показано на рис.1.4. Найти ток текущий через резистор R1. 177. Батареи имеют ЭДС E1 = 72 В и E2 = 36 В, резисторы R1= 100 Ом, R2= 50 Ом и R3= 20 Ом (рис. 1.5). Найти показания амперметра. 268. ЭДС элементов E1 = 2,0 В и E2 = 1,5 В, резисторы R1= 10 Ом, R2= 5 Ом и R3= 2 Ом (рис.1.6). Найти токи I в ветвях цепи. 179. В сеть с напряжением U = 100 В подключили катушку с сопротивлением R1 = 2 кОм и вольтметр, соединенные последовательно. Показание вольтметра U1 = 80 В. Когда катушку заменили другой, вольтметр показал U2 = 60 В. Определить сопротивление R2 другой катушки. 180. Батареи имеют ЭДС E1 = 2,0 В и E2 = 3,0 В, резистор R3= 1,0 кОм, сопротивление амперметра RА= 0,5 кОм (рис. 1.3). Падение потенциала на сопротивлении R1 равно U1= 1,2 В (ток через R1 направлен сверху вниз). Найти показания амперметра.
Контрольная работа № 2 201. Бесконечно длинный провод с током I = 100 А изогнут так, как это показано на рис.2.1. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 202. Магнитный момент рm тонкого проводящего кольца pm = 5 А×м2. Определить магнитную индукцию В в точке А, находящейся на оси кольца и удаленной от кольца на расстояние r = 20 см (рис.2.2). 203. По двум скрещенным под прямым углом бесконечно длинным проводам текут токи I и 2I (I = 100 А). Определить магнитную индукцию В в точке А (рис.2.3). Расстояние d = 10 см. 204. По бесконечно длинному проводу, изогнутому так, как показано на рис.2.4, течет ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 205. По тонкому кольцу радиусом R = 20 см течет ток I = 100 А. Определить магнитную индукцию В на оси кольца в точке А (рис.2.5). Угол b = p/3. 206. По двум бесконечно длинным проводам, скрещенным под прямым углом, текут токи I1 и I2 = 2I1 (I1 = 100 А). Определить магнитную индукцию В в точке А, равноудаленной от проводов на расстояние d = 10 см (рис.2.6). 207. По бесконечно длинному проводу, изогнутому так, как показано на рис. 2.8, течет ток I = 200 А. Определить магнитную индукцию В в точке О. Радиус дуги R = 10 см. 208. По тонкому кольцу течет ток I = 80 А. Определить магнитную индукцию В в точке А, равноудаленной от точек кольца на расстояние r = 10 см (рис.2.7). Угол a = p/6. 209. По двум бесконечно длинным прямым, параллельным проводам, текут одинаковые токи I = 60 А. Определить магнитную индукцию В в точке А (рис.2.9), равноудаленной от проводов на расстояние d = 10 см. Угол b = p/3. 210. Бесконечно длинный провод с током I = 60 А изогнут так, как показано на рис.2.10. Определить магнитную индукцию В в точке А, лежащей на биссектрисе прямого угла на расстоянии d = 10 см от его вершины. 211. Протон , прошедший ускоряющую разность потенциалов U =800 В, влетел в однородное магнитное поле с индукцией В = 0,06 Тл и начал двигаться по окружности. Найти её радиус. 212. Однозарядный ион прошел ускоряющую разность потенциалов U = 1 кВ и влетел перпендикулярно линиям магнитной индукции в однородное поле (В = 0,5 Тл). Определить массу m иона, если он описал окружность радиусом R = 4,37 см. 213. Электрон, ускоренный разностью потенциалов U = 500 В движется параллельно прямолинейно длинному проводу на расстоянии d = 5 мм от него. Найти силу F, действующую на электрон, если по проводу пустить ток I =10 А. 214. Альфа-частица прошла ускоряющую разность потенциалов U = 300 В и, попав в однородное магнитное поле, стала двигаться по винтовой линии радиусом R = 1 см и шагом h = 4 мм. Определить магнитную индукцию В поля. 215. Заряженная частица прошла ускоряющую разность потенциалов U = 100 В и, влетев в однородное магнитное поле (В = 0,1 Тл), стала двигаться по винтовой линии с шагом h = 6,5 см и радиусом R = 1 см. Определить отношение заряда частицы к ее массе. 216. Протон и электрон, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько радиус кривизны R1 траектории протона больше радиуса кривизны R2 траектории электрона? 217. Протон прошел ускоряющую разность потенциалов U = 800 В и влетел в однородное магнитное поле (В = 20 мТл) под углом a = 30° к линиям магнитной индукции. Определить шаг h и радиус R винтовой линии, по которой будет двигаться протон в магнитном поле. 218. Альфа-частица, пройдя ускоряющую разность потенциалов U, стала двигаться в однородном магнитном поле (В = 50 мТл) по винтовой линии с шагом h = 5 см и радиусом R = 1 см. Определить ускоряющую разность потенциалов, которую прошла альфа-частица. 219. Заряженная частица со скоростью v =106 м/с влетев в однородное магнитное поле с индукцией В = 0,3 Тл и стала двигаться по окружности радиусом R = 4 см. Найти заряд Q частицы, если её кинетическая энергия Т = 12 кэВ. 220. Заряженная частица с энергией Т = 1 кэВ движется в однородном магнитном поле по окружности радиусом R = 1,4 мм. Найти силу F, действующую на частицу со стороны поля. 221. В однородном магнитном поле с индукцией В = 0,8 Тл находится прямой провод длиной l = 30 cм, концы которого замкнуты вне поля. Сопротивление всей цепи R = 0,2 Ом. Найти силу, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью v = 2,5 м/с. 222. В однородном магнитном поле с индукцией В = 0,5 Тл вращается с частотой n = 5 с-1 стержень длиной l = 20 см. Ось вращения параллельна линиям индукции и проходит через один из концов стержня перпендикулярно его оси. Определить разность потенциалов U на концах стержня. 223. Тонкий медный провод массой m = 5 г согнут в виде квадрата, и концы его замкнуты. Квадрат помещен в однородное магнитное поле (В = 0,2 Тл) так, что плоскость перпендикулярна линиям поля. Определить заряд Q, который потечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию. 224. Рамка, содержащая N = 200 витков тонкого провода, может свободно вращаться относительно оси, лежащей в плоскости рамки. Площадь рамки S = 50 см2. Ось рамки перпендикулярна линиям индукции магнитного поля (В = 0,05 Тл). Определить максимальную ЭДС emax, которая индуцируется в рамке при ее вращении с частотой n = 40 с-1. 225. Прямой проводящий стержень длиной l = 40 см находится в однородном магнитном поле (В = 0,1 Тл). Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи R = 0,5 Ом. Какая мощность Р потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью V = 10 м/с? 226. Проволочный контур площадью S = 500 см2 и сопротивлением R = 0,1 Ом равномерно вращается в однородном магнитном поле (В = 0,5 Тл). Ось вращения лежит в плоскости кольца и перпендикулярна линиям магнитной индукции. Определить максимальную мощность Рmax, необходимую для вращения контура с угловой скоростью w = 50 рад/с. 227. Соленоид содержит N = 800 витков. Сечение сердечника (из немагнитного материала) S = 10 см2. По обмотке течет ток, создающий поле с индукцией В = 8 мТл. Определить среднее значение ЭДС <eS > самоиндукции, которая возникает на зажимах соленоида, если сила тока уменьшается практически до нуля за время Dt = 0,8 мс. 228. В электрической цепи, содержащей резистор сопротивлением R = 20 Ом и катушку индуктивностью L = 0,06 Гн, течет ток I = 20 А. Определить силу тока I в цепи через Dt = 0,2 мс после ее размыкания. 229. Цепь состоит из катушки индуктивностью L = 0,1 Гн и источника тока. Источник тока отключили, не разрывая цепи. Время, через которое сила тока уменьшится до 0,001 первоначального значения, равно t = 0,07 с. Определить сопротивление катушки. 230. Источник тока замкнули на катушку сопротивлением R = 10 Ом и индуктивностью L = 0,2 Гн. Через какое время сила тока в цепи достигнет 50% от его максимального значения? 231. На невесомом стержне длиной l = 30 см укреплены два одинаковых грузика: один - в середине стержня, другой - на одном из его концов. Стержень с грузами колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период Т простых гармонических колебаний данного физического маятника. 232. Определить максимальное ускорение аmax материальной точки, совершающей гармонические колебания с амплитудой А = 25 см, если наибольшая скорость точки vmax= 40 см/c. Написать также уравнение колебаний. 233. Точка совершает простые гармонические колебания, уравнение которых х = А sinwt, где А = 5 см, w = 2 с-1. В момент времени, когда точка обладала потенциальной энергией П = 0,1 мДж, на нее действовала возвращающая сила F = 5 мН. Найти этот момент времени t. 234. Определить частоту n простых гармонических колебаний диска радиусом R = 20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости. 235. Определить период Т простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска. 236. К спиральной пружине подвесили грузик, в результате чего пружина растянулась на x =8 см. Каков будет период колебаний грузика, если его немного поднять вверх и отпустить? 237. Материальная точка совершает простые гармонические колебания так, что в начальный момент времени смещение х0 = 4 см, а скорость V0 = 10 см/с. Определить амплитуду А и начальную фазу j0 колебаний, если их период Т = 2 с. 238. К пружине подвешен груз. Максимальная кинетическая энергия колебаний груза Тmax = 1,2 Дж.Амплитуда колебаний А = 5 см. Найти коэффициент жесткости К пружины. 239. На гладком горизонтальном столе лежит шар массой M = 200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью К = 500 Н/м. В шар попадает пуля массой m = 10 г, летящая со скоростью V = 300 м/с и застрявшая в нем. Пренебрегая сопротивлением воздуха, определить амплитуду А и период Т колебаний шара. 240. Шарик массой m = 60 г колеблется с периодом Т = 2 с. В начальный момент времени смещение шарика х0 = 4,0 см и он обладает энергией Е = 0,02 Дж. Записать уравнение простого гармонического колебания шарика и закон изменения возрастающей силы с течением времени. 241. В опыте Юнга расстояние d между щелями равно 0,6 мм. На каком расстоянии l от щелей следует расположить экран, чтобы ширина b интерференционной полосы оказалась равной 2 мм? 242. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны l = 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину dmin пленки, если показатель преломления материала пленки n = 1,4. 243. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны l = 500 нм. Найти радиус R линзы, если радиус четвертого темного кольца Ньютона в отраженном свете r4 = 2 мм. 244. Угол α между плоскостями пропускания поляризатора и анализатора равен 300. Во сколько раз изменится интенсивность света, если угол увеличить до 600? 245. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны l = 500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете в = 0,5 мм. Определить угол a между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, n = 1,6. 246. На дифракционную решетку, содержащую n = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L = 1,2 м. Границы видимого спектра lКР = 780 нм, lФ = 400 нм. 247. Установка для наблюдений колец Ньютона освещаются нормально падающим монохроматическим светом (l = 590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо. 248. В частично поляризованном свете амплитуда светового вектора, соответствующая максимальной интенсивности света в n = 3 раза больше амплитуды, соответствующей минимальной интенсивности. Определить степень поляризации Р света. 249. На дифракционную решетку, содержащую n = 600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана L = 1,2 м. Границы видимого спектра lКР = 780 нм, lФ = 400 нм. 250. Найти показатель преломления n стекла, если при падении на него света отраженный луч будет полностью поляризован при угле преломления γ =300. 251. При увеличении термодинамической температуры Т черного тела в два раза длина волны lm, на которую приходится максимум спектральной излучательной способности, уменьшилась на Dl= 400 нм. Определить начальную Т1 и конечную Т2 температуры тела. 252. Красная граница фотоэффекта для цинка l0 = 310 нм. Определить максимальную кинетическую энергию Тmax фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны l = 200 нм. 253. На фотоэлемент с катодом из лития падает свет с длиной волны l = 200 нм. Найти наименьшее значение задерживающей разности потенциалов Umin, которую нужно приложить к фотоэлементу, чтобы прекратить фототок. Работа выхода электронов из лития А = 2,3 эВ 254. Определить длину волны λ, массу m, и импульс р фотона с энергией ε =1,2 МэВ. Сравнить массу этого фотона с массой покоя электрона. 255. На металлическую пластину направлен пучок ультрафиолетового излучения (l = 0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов Umin = 0,96 В. Определить работу выхода А электронов из металла. 256. Монохроматическое излучение с длиной волны λ =550 нм падает нормально на плоскую зеркальную поверхность и давит на неё с силой F = 1,2 нН. Определить число N фотонов, ежесекундно падающих на эту поверхность. 257. Определить длину волны λ фотона, импульс которого равен импульсу электрона, обладающего скоростью v =10 Мм/с. 258. На металлическую пластинку направлен монохроматический пучок света с частотой n = 7,3×1014 Гц. Красная граница l0 фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость Vmax фотоэлектронов. 259. Монохроматическое излучение с длиной волны λ = 660 нм падает нормально на плоскую зачерненную поверхность и давит на неё с силой F = 0,8 нН. Определить число N фотонов, ежесекундно падающих на эту поверхность. 260. Фотоны с энергией ε =4,8 эВ вырывают электроны из металла с работой выхода А = 4,5 эВ. Найти максимальный импульс рmax , передаваемый поверхности металла при вылете каждого электрона. 261. Протон обладает кинетической энергией Т = 1 кэВ. Определить дополнительную энергию DТ, которую необходимо ему сообщить для того, чтобы длина волны l де Бройля уменьшилась в три раза. 262. Используя соотношения неопределенностей, оценить ширину l одномерного потенциального ящика, в котором минимальная энергия электрона Еmin = 10 эВ. 263. Определить длины волн де Бройля протона, прошедшего ускоряющую разность потенциалов U = 1 кВ. 264. Электрон находится в бесконечно глубоком одномерном потенциальном ящике на втором энергетическом уровне. Какова вероятность w обнаружения электрона в крайней трети ящика? 265. Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, движущегося внутри сферы радиусом R = 0,05 нм. 266. Вычислить наиболее вероятную дебройлевскую длину волны l молекул азота, содержащихся в воздухе при комнатной температуре. 267. Используя соотношения неопределенностей, оценить ширину l одномерного потенциального ящика, в котором минимальная энергия электрона Еmin = 10 эВ. 268. . В прямоугольной потенциальной яме шириной l с абсолютно непроницаемыми стенками (0 < x < l) находится частица в основном состоянии. Найти вероятность w местонахождения этой частицы в области 1/4l < x < 3/4l. 269. Электрон движется по окружности радиуса R = 0,8 см в однородном магнитном поле с индукцией В = 10 мТл. Определить длину волны де Бройля λ для этого электрона. 270. Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию электрона, движущегося внутри сферы радиусом R = 0,05 нм. 271. . Счетчик альфа-частиц, установленный вблизи радиоактивного изотопа при первом измерении регистрировал N1 = 1400 частиц в минуту, а через время t = 4 ч - только N2 = 400 мин-1. Определить период полураспада Т1/2 изотопа. 272. Вычислить энергию ядерной реакции . Освобождается или поглощается энергия? 273. Найти период полураспада Т1/2 радиоактивного изотопа, если его активность за время t = 10 сут уменьшилась на 25% по сравнению с первоначальной. 274. Вычислить энергию ядерной реакции . Освобождается или поглощается эта энергия? 275. Активность некоторого изотопа за время t =12 сут уменьшилась на 20%. Определить период полураспада Т1/2 этого изотопа. 276. Вычислить энергию ядерной реакции . Освобождается или поглощается эта энергия? 277. За один час начальное количество радиоактивного изотопа уменьшилось в 2,2 раза. Во сколько раз оно уменьшится за два часа? 278. За время t =12 суток распалось κ =2/3 начального количества ядер радиоактивного изотопа. Найти период полураспада Т1/2 этого элемента. 279. Определить во сколько раз начальное количество ядер радиоактивного изотопа уменьшится за три года, если за один год оно уменьшилось в 4 раза. 280. Определить количество теплоты Q, выделяющейся при распаде радона активностью А = 3,7×1010 Бк за время t = 20 мин. Кинетическая энергия Т вылетающей из радона альфа-частицы равна 5,5 МэВ. | |