Главная » Учебно-методические материалы » ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ » Линейное программирование |
22.12.2011, 12:45 | |
Симплексный методДанный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует. Основное содержание симплексного метода заключается в следующем:
Алгоритм симплексного метода решения задач линейного программированияДля того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
Пример решения задачи симплексным методомПример 26.1Решить симплексным методом задачу: Решение: Приводим задачу к каноническому виду. Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x6 с коэффициентом +1. В целевую функцию переменная x6 входит с коэффицентом ноль (т.е. не входит). Получаем: Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0. Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6). Вычисляем оценки разложений векторов условий по базису опорного решения по формуле: Δk = CбXk — ck Где:
Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу: Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "Сб" записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "Сб" оценки единичных векторов, входящих в базис, всегда равных нулю. В последней строке таблицы с оценками Δk в столбце "А0" записываются значения целевой функции на опорном решении Z(X1). Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ1 = -2, Δ3= -9 для векторов А1 и А3отрицательные. По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше. Определим, введение какого из двух векторов приведет к большему приращению целевой функции. Приращение целевой функции находится по формуле: . Вычисляем значения параметра θ01 для первого и третьего столбцов по формуле: Получаем θ01 = 6 при l = 1, θ03 = 3 при l = 1 (таблица 26.1). Находим приращение целевой функции при введении в базис первого вектора ΔZ1 = — 6*(- 2) = 12, и третьего вектора ΔZ3 = — 3*(- 9) = 27. Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ03 достигается в первой строке (l = 1). Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2) Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения. Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3). Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные Δ1 = 7/2, Δ4 = 2, Δ6 = 7/2. Ответ: max Z(X) = 201 при Х = (0,7,10,0,63). Метод линейного программирования в экономическом анализеМетод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов. При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин. Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов. Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков. Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации. Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени. Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций. Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования. Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными. Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др. Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем. Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются. | http://www.grandars.ru |