Главная » Учебно-методические материалы » ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ » Линейное программирование

Математические модели задач линейного программирования
22.12.2011, 12:44

Составляющие математической модели

Основой для решения экономических задач являются математические модели.

Математической моделью задачи называется совокупность математических соотношений, описывающих суть задачи.

Составление математической модели включает:
  • выбор переменных задачи
  • составление системы ограничений
  • выбор целевой функции

Переменными задачи называются величины Х1, Х2, Хn, которые полностью характеризуют экономический процесс. Обычно их записывают в виде вектора: X=(X1, X2,...,Xn).

Системой ограничений задачи называют совокупность уравнений и неравенств, описывающих ограниченность ресурсов в рассматриваемой задаче.

Целевой функцией задачи называют функцию переменных задачи, которая характеризует качество выполнения задачи и экстремум которой требуется найти.

В общем случае задача линейного программирования может быть записана в таком виде:

Математическая модель

Данная запись означает следующее: найти экстремум целевой функции (1) и соответствующие ему переменные X=(X1, X2,...,Xn) при условии, что эти переменные удовлетворяют системе ограничений (2) и условиям неотрицательности (3).

Допустимым решением (планом) задачи линейного программирования называется любой n-мерный вектор X=(X1, X2,...,Xn), удовлетворяющий системе ограничений и условиям неотрицательности.

Множество допустимых решений (планов) задачи образует область допустимых решений (ОДР).

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение (план) задачи, при котором целевая функция достигает экстремума.

Пример составления математической модели

Задача использования ресурсов (сырья)

Условие: Для изготовления n видов продукции используется m видов ресурсов. Составить математическую модель.

Известны:

  • bi ( i = 1,2,3,...,m) — запасы каждого i-го вида ресурса;
  • aij ( i = 1,2,3,...,m; j=1,2,3,...,n) — затраты каждого i-го вида ресурса на производство единицы объема j-го вида продукции;
  • cj ( j = 1,2,3,...,n) — прибыль от реализации единицы объема j-го вида продукции.

Требуется составить план производства продукции, который обеспечивает максимум прибыли при заданных ограничениях на ресурсы (сырье).

Решение:

Введем вектор переменных X=(X1, X2,...,Xn), где xj ( j = 1,2,...,n) — объем производства j-го вида продукции.

Затраты i-го вида ресурса на изготовление данного объема xj продукции равны aijxj, поэтому ограничение на использование ресурсов на производство всех видов продукции имеет вид: 
Прибыль от реализации j-го вида продукции равна cjxj , поэтому целевая функция равна: 

Ответ - Математическая модель имеет вид:

Математическая модель

Каноническая форма задачи линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися.

В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической.

Она может быть представлена в координатной, векторной и матричной записи.

Каноническая задача линейного программирования в координатной записи имеет вид:

Каноническая форма

Каноническая задача линейного программирования в матричной записи имеет вид:

Матричная запись

Здесь:

  • А — матрица коэффициентов системы уравнений
  • Х — матрица-столбец переменных задачи
  • Ао — матрица-столбец правых частей системы ограничений

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной записи имеют вид:

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении моделей экономических задач ограничения в основном формируются в виде системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений.

Это может быть сделано следующим образом:

Возьмем линейное неравенство a1x1+a2x2+...+anxn≤b и прибавим к его левой части некоторую величину xn+1 , такую, что неравенство превратилось в равенство a1x1+a2x2+...+anxn+xn+1=b. При этом данная величина xn+1 является неотрицательной.

Рассмотрим все на примере.

Пример 26.1

Привести к каноническому виду задачу линейного программирования:

Решение:
Перейдем к задаче на отыскивание максимума целевой функции.
Для этого изменим знаки коэффициентов целевой функции.
Для превращения второго и третьего неравенств системы ограничений в уравнения введем неотрицательные дополнительные переменные x4 x(на математической модели эта операция отмечена буквой Д).
Переменная х4 вводится в левую часть второго неравенства со знаком "+", так как неравенство имеет вид "≤".
Переменная x5 вводится в левую часть третьего неравенства со знаком "-", так как неравенство имеет вид "≥".
В целевую функцию переменные x4 x5 вводятся с коэффициентом. равным нулю.
Записываем задачу в каноническом виде:

http://www.grandars.ru




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ДРУГИЕ ЭКОНОМИЧЕСКИЕ ДИСЦИПЛИНЫ
ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ
ИНВЕСТИЦИИ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
ТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
ЮРИСПРУДЕНЦИЯ