Главная » Учебно-методические материалы » СТАТИСТИКА » Общая теория статистики |
15.12.2011, 11:25 | |
Распространение выборочных результатов на генеральную совокупностьКонечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и). Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью) содержит истинное значение этого параметра. Предельная ошибка выборки Δпозволяет определить предельные значения характеристик генеральной совокупности и ихдоверительные интервалы, которые равны: Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления. Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле: Это означает, что с заданной вероятностью Р, которая называется доверительным уровнем и однозначно определяется значением t, можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по таблице Стьюдента. Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29. Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы: Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки: где Δ%- относительная предельная ошибка выборки; , . Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов. Сущность прямого пересчета заключается в умножении выборочного среднего значения !!\overline{x} на объем генеральной совокупности . Пример. Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест. Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения. При этом используют формулу: , где все переменные — это численность совокупности:
Необходимый объем выборкиТаблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюденияПри планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки. Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки: непосредственно определяется объем выборки n: Эта формула показывает, что с уменьшением предельной ошибки выборки Δсущественно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента . Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4. | http://www.grandars.ru |