Главная » Учебно-методические материалы » СТАТИСТИКА » Общая теория статистики

Генеральная совокупность и выборочный метод (1)
15.12.2011, 11:23

Статистическая совокупность


Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом
 статистического исследования.Статистическая совокупность 
- множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией.

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу статистического исследования составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой, а гипотетически существующая (домысливаемая) — генеральной совокупностью. Генеральная совокупность может быть конечной (число наблюдений N = const) или бесконечной (N = ∞), а выборка из генеральной совокупности — это всегда результат ограниченного ряда  наблюдений. Число наблюдений , образующих выборку, называется объемом выборки. Если объем выборки  достаточно велик (n → ∞) выборка считается большой, в противном случае она называется выборкой ограниченного объема. Выборка считается малой, если при измерении одномерной случайной величины  объем выборки не превышает 30 (n <= 30), а при измерении одновременно нескольких (k) признаков в многомерном пространстве отношениек k не превышает 10 (n/k < 10). Выборка образует вариационный ряд, если ее члены являются порядковыми статистиками, т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называютсявариантами.

Пример. Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного инесплошного наблюдения . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности, анесплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор, при котором  объектов случайно извлекаются из генеральной совокупности  объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема  подразделяется на подсовокупности или слои (страты) объема  так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными);

4. методы серийного отбора используются для формирования серийных или гнездовых выборок. Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый ) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной.

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. Приповторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения1, х2, … , хn) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическимраспределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения  в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание  и дисперсия .

По своей природе распределения бывают непрерывными и дискретными. Наиболее известным непрерывным распределением является нормальное. Выборочными аналогами параметров  идля него являются: среднее значение  и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое)распределение. Параметр математического ожидания  этого распределения выражает относительную величину (или долю) единиц совокупности, которые обладают изучаемым признаком  (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p). Дисперсия же  альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки kn называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

kn = n/N.

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n:

w = nn/n.

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки kn в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки.

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей


http://www.grandars.ru




БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ДРУГИЕ ЭКОНОМИЧЕСКИЕ ДИСЦИПЛИНЫ
ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ
ИНВЕСТИЦИИ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
ТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
ЮРИСПРУДЕНЦИЯ