Главная » Учебно-методические материалы » ФИНАНСОВЫЙ МЕНЕДЖМЕНТ » Статьи |
26.12.2011, 01:54 | |
И в теории, и на практике постоянно приходится решать вопрос о том, в каком соотношении находятся суммы денег, полученные в разные моменты времени, для получения выводов о целесообразности вложения капитала. Рассмотрим способы определения современной стоимости денег — дисконтирование будущих сумм на сегодня, определение наращенной суммы вложений, в том числе в условиях инфляции, эрозии капитала. Автор: Лилия Тимофеевна Гиляровская, профессор, доктор экономических наук, заведующая кафедрой бухгалтерского учета и анализа хозяйственной деятельности Всероссийского заочного финансово-экономического института. Коммерческие отношения в современном бизнесе связаны с принятием финансовых решений, например: при расчетах доходности на рынке ценных бумаг; оценке доходности капиталовложений в реальное производство; в связи с необходимостью учесть экономическую неэквивалентность одинаковых сумм денег в разные календарные сроки, т.е. временную стоимость денег; при обнаружении влияния инфляции на перечисленные выше процессы. Деловой человек должен владеть как теорией, так и техникой принятия финансовых решений, используя количественные методы для получения выводов о целесообразности сделанного выбора вложения капитала. Финансовая математика приобретает все большую роль в экономическом анализе. В данной публикации не рассматривается сложный математический аппарат учета факторов неопределенности и риска, содержащий разные разделы теории вероятности и новейшие модели математических теорий. Внимание будет уделено простым способам определения современной стоимости денег — дисконтированию будущих сумм на сегодня, определению наращенной суммы вложений, в том числе в условиях инфляции, эрозии капитала. Рассмотрим основную формулу наращения простых процентов, когда наращенная сумма (I) рассчитывается с учетом того, что проценты на проценты не начисляются, а начисляются они на одну и ту же исходную сумму (S0). В этом случае алгоритм расчета наращенной суммы будет таким: I = S0 * (1 + it), где i — годовая процентная ставка; t — число периодов начисления процентов. Исходная сумма может быть рассчитана как S0= I / (1 + it) При расчете числа простых процентов, выплачиваемых банком, используется алгоритм i = (I / S0 - 1) * (1 / t) Рассмотрим применение этих алгоритмов на условном числовом примере.
Надо обратить внимание на то, что кредитору выгоднее выдавать ссуду под простой дисконт, а не под простой процент. Простой дисконт (d) представляет собой процентный доход, который вычитается из ссуды в момент ее выдачи. Сравним наращенную сумму, которую надо вернуть кредитору при условии выдачи кредита в одинаковой сумме, но под простой процент — в одном случае и под простой дисконт — в другом.
Поскольку простой процент представляет собой отношение суммы приращения за какой-то срок к начальной сумме, это есть ставка процента, эффективность вложений, или интерес кредитора (по зарубежной терминологии). Дисконт, или относительная скидка, — это отношение суммы приращения за определенный срок к наращенной сумме. В практических финансовых расчетах с использованием дисконта удобно применять дисконт-фактор (V) — отношение начальной суммы вложений к наращенной или разность между единицей и дисконтом за определенный срок: V = 1 - d(it) = S0 / I Для расчета суммы, которую клиент получит на руки, если по условиям кредитного договора ссуда выдается под простой дисконт, надо предполагаемую к возврату сумму умножить на величину дисконт-фактора. И в теории, и на практике постоянно приходится решать вопрос о том, в каком соотношении находятся суммы денег, полученные в разные моменты времени. Рассчитать современную ценность суммы денег можно путем ее дисконтирования. Для определения современной, или приведенной, ценности денег можно воспользоваться алгоритмом: S0 = I / (1 + i * t) Расчет базируется на алгоритме исчисления суммы наращения, приведенном выше. При этом внимание принимается возможность использования денег путем инвестирования в банк под простой годовой процент. Годовая ставка носит названиеноминальной. Две или несколько приведенных сумм денег считаются эквивалентными, если их современные ценности одинаковы. Эквивалентность приведенных сумм используется для сравнения контрактов на получение ссуды, а также при решении вопроса об изменении условий такого рода сделки.
На практике финансовые операции обычно совершаются с использованием сложных процентов. Кредитные взаимоотношения, осуществление долгосрочных финансово-кредитных операций, оценка инвестиционных проектов нередко требуют применения математических моделей непрерывного начисления процентов, их реинвестирования, использования сложных процентов. Особенность процесса при этом состоит в том, что исходная базовая сумма увеличивается с каждым периодом начисления, в то время как при использовании простых процентов она остается неизменной. Наращение по сложным процентам осуществляется с ускорением. Процесс присоединения начисленных процентов к базовой сумме носит название капитализации процентов. Наращение по сложным процентам описывается геометрической прогрессией. Множитель наращения будет выглядеть как (1 + i)t. Наращенная сумма исчисляется по алгоритму: St = S0 * (1 + i)t где S0 — базовая сумма (современная стоимость суммы денег); St — будущее значение суммы денег; i — годовая процентная ставка; t — срок, по истечении которого современное значение денег изменится.
В финансовых расчетах с использованием сложных процентов принято определять эффективную ставку, т.е. такую годовую номинальную ставку сложных процентов, которая дает возможность получить тот же результат, как и при начислении процентов несколько раз в году. Равенство наращенных сумм обеспечивается здесь равенством первоначальных сумм, периодов и множителей наращения. Эффективная процентная ставка будет больше номинальной. Это видно из соответствующих алгоритмов, где iэф — эффективная ставка. Множители наращения должны быть равны (1 + iэф)t = (1+im/m)mt Отсюда эффективная ставка составит iэф = (1+ im/m)mt - 1
В финансовых расчетах должна учитываться инфляция, тем более если она значительна. С одной стороны, сумма, положенная, например, на депозит, получит приращение, а с другой — утратит свою реальную стоимость в результате инфляции. Для определения наращенной суммы с учетом инфляции используют алгоритм Sинф = S0 * (1 + im/m)t / (1 + h)t где Sинф — наращенная сумма с учетом инфляции; S0 — базовая сумма; im — годовая номинальная банковская ставка, применяемая m разв году; h — ожидаемый месячный темп инфляции; t — число месяцев.
Чаще всего финансовые операции имеют продолжительный характер, состоят не из одного разового платежа, а из потоков платежей и нередко с разными знаками. В качестве примера можно привести: ежегодные выплаты процентов по облигациям, ежемесячные взносы на погашение потребительского кредита, получение ежемесячных стипендий от благотворительного фонда; арендные платежи; периодические вклады в банк для образования страхового фонда и др. В таких финансовых операциях возникает необходимость найти наращенную сумму потока платежей или, наоборот, по наращенной сумме определить величину отдельного платежа. Для целого ряда финансовых расчетов разработаны математические модели. Лилия Тимофеевна Гиляровская | http://www.elitarium.ru/ |