Главная » Учебно-методические материалы » ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ » Безопасность жизнедеятельности: курс лекций (СИБИТ)

ТЕМА 4 ВИБРАЦИЯ
02.11.2017, 15:39

В условиях современного производства процесс техники связан с чрезвычайно интенсивным внедрением в промышленность машин, генерирующих вибрацию. Почти во всех отраслях производства находят широкое применение инструменты и машины, работа которых сопряжена со значительной вибрацией. С воздействием вибрации на организм связаны также эксплуатация транспортных средств, использование сельскохозяйственной техники, землеройных машин, строительные работы.

В настоящее время проблема воздействия вибрации на организм человека приобрела исключительно серьезное значение. Наиболее часто вибрационной болезнью страдают рабочие определенных профессий: бурильщики, обрубщики, бетонщики, шлифовальщики, полировщики, клепальщики, сверловщики, кондуктора товарных поездов, водители тяжелых землеройных машин, швеи-мотористки. Биологический эффект воздействия вибрации на организм в значительной степени определяется физическими ее свойствами. Вибрация – колебательные движения, при которых тело либо материальная точка совершает движения с правильной периодичностью отклонения от устойчивого положения в ту или иную сторону, затрачивая на каждое из колебательных движений одинаковое время.

Малые механические колебания, возникающие в упругих телах или телах, находящихся под воздействием переменного физического поля, называются вибрацией. Воздействие вибрации на человека классифицируют: по способу передачи колебаний, по направлению действия вибрации, по временной характеристике вибрации. В зависимости от способа передачи колебаний человеки вибрацию подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную, передающуюся через руки человека. Вибрация, воздействующая на ноги сидящего человека, на предплечья, контактирующие с вибрирующими поверхностями рабочих столов, также относится к локальной.

Вибрация относится к факторам, обладающим высокой биологической активностью. Выраженность ответных реакций обусловливается главным образом силой энергетического воздействия и биомеханическими свойствами человеческого тела как сложной колебательной системы. Мощность колебательного процесса в зоне контакта и время этого контакта являются главными параметрами, определяющими развитие вибрационных патологий, структура которых зависит от частоты и амплитуды колебания, продолжительности воздействия, места приложения и направления оси вибрационного воздействия, демпфирующих свойств тканей, явлений резонанса и других условий.

ОБЩИЕ СВЕДЕНИЯ О ВИБРАЦИИ

Вибрация представляет собой процесс распространения механических колебаний в твердом теле. При воздействии вибрации на организм (рис. 4) важную роль играют анализаторы ЦНС – вестибулярный, кожный и другие аппараты.

Длительное воздействие вибрации ведет к развитию профессиональной вибрационной болезни. Вибрация, воздействуя на машинный компонент системы ЧМ («человек – машина»), снижает производительность технических установок (за исключением специальных случаев) и точность считываемых показаний приборов, вызывает знакопеременные, приводящие к усталостному разрушению, напряжения в конструкции и т. Д.

Вибрации могут быть непреднамеренными (например, из-за плохой балансировки и центровки вращающихся частей машин и оборудования, пульсирующего движения жидкости, работы перфоратора) и специально используемыми в технологических процессах (вибропогружатели свай, вибрационное оборудование для производства железобетонных конструкций и укладки бетона, специальное оборудование для ускорения химических реакций и т. П.). Вибрации характеризуются частотой и амплитудой смещения, скоростью и ускорением.

Особенно вредны вибрации с вынужденной частотой, совпадающей с частотой собственных колебаний тела человека или его отдельных органов (для тела человека – 6…9 Гц, желудка – 8 Гц, других органов – в пределах 25 Гц). Частотный диапазон расстройств зрительных восприятий лежит между 60 и 90 Гц, что соответствует резонансу глазных яблок. При работе строительных машин и технологических процессов существуют горизонтальные и вертикальные толчки и тряска, сопровождающиеся возникновением периодических импульсных ускорений. При частоте колебаний от 1 до 10 Гц предельные ускорения, равные 10 мм/с, являются неощутимыми, 40 мм/с – слабо ощутимыми, 400 мм/с – сильно ощутимыми и 1 000 мм/с – вредными.

Вибрация по способу передачи телу человека подразделяется на общую (воздействие на все тело человека) и локальную (воздействие на отдельные части тела – руки или ноги).

Общую вибрацию по источнику возникновения и возможности регулирования ее интенсивности оператором подразделяют на следующие категории (ГОСТ 12. 1. 012 – 90. Вибрационная безопасность). Общие требования:

Категория 1 – транспортная вибрация, воздействующая на оператора на рабочих местах самоходных и прицепных машин и транспортных средств, при их движении по местности, агрофону и дорогам, в том числе при их строительстве; при этом оператор может активно, в известных пределах, регулировать воздействия вибрации.

Категория 2 – транспортно-технологическая вибрация, воздействующая на человекаоператора на рабочих местах машин с ограниченной подвижностью при перемещении их по специально подготовленным поверхностям производственных помещений, промышленных площадок и горных выработок; при этом оператор может лишь иногда регулировать воздействие вибрации.

Категория 3а – технологическая вибрация, воздействующая на оператора на рабочих местах стационарных машин или передающаяся на рабочие места, не имеющие источников вибрации.

Категория 3б – вибрация на рабочих местах работников умственного труда и персонала, не занимающегося физическим трудом. К ней относятся рабочие места на промышленных кранах, у станков металлои деревообрабатывающих, кузнечно-прессового оборудования, литейных машин и другого стационарного технологического оборудования.

Локальная вибрация вызывает спазмы сосудов, которые начинаются с концевых фаланг пальцев рук и распространяются на всю кисть, предплечья, захватывают сосуды сердца. Диапазон частот 35…250 Гц является наиболее критическим для развития вибрационной болезни.

Локальная вибрация по источнику воздействия подразделяется на:

- Передающуюся от ручных машин (с двигателями), органов ручного управления машин и оборудования;

- Передающуюся от ручных инструментов (без двигателей) и обрабатываемых деталей.

При гигиенической оценке двух видов вибрации следует иметь в виду, что санитарногигиенические требования и правила в первом случае включаются в техническую документацию на машины и оборудование, а во втором – в документацию на технологию проведения работ.

Вибрация рабочих мест операторов транспортных средств и оборудования носит преимущественно низкочастотный характер с высокими уровнями в октавах 1…8 Гц и зависит от технологической операции, скорости передвижения, типа сиденья, виброзащиты, степени изношенности машины, профиля дорог и т. Д. Характер спектров широкополосный, при этом максимум энергии лежит в диапазоне 1…2 Гц; 4…8 Гц. На операторов транспортных средств обычно воздействует переменная по уровням и спектрам вибрация, включающая микрои макропаузы, причем операторы имеют возможность (в известных пределах) регулировать вибрационную экспозицию. Спектры вибраций рабочих мест технологического оборудования носят низкои среднечастотный характер с максимумом энергии в октавах 4…16 Гц.

Благодаря наличию мягких тканей, костей, суставов, внутренних органов и особенностей конфигурации, тело человека представляет собой сложную колебательную систему, первичная механическая реакция которой на вибрационное воздействие зависит от диапазона частот, предопределяя последующие физиологические эффекты.

Для санитарного нормирования и контроля вибраций используют среднеквадратичные значения виброускорения и виброскорости, а также их логарифмические уровни в децибелах (ГОСТ 12. 1. 012 – 90).

Для измерения вибрации применяют виброметры и шумомеры с дополнительным приспособлением – предусилителем, устанавливаемым вместо микрофона. Широкое распространение получили приборы ВШВ ЗМ2 – измерители шума и вибрации.

Между ответными реакциями организма и уровнем воздействующей вибрации нет линейной зависимости. Причину этого явления видят в резонансном эффекте. При повышении частот колебания более 0,7 Гц возможны резонансные колебания в органах человека. Резонанс человеческого тела, отдельных его органов наступает под действием внешних сил при совпадении собственных частот колебаний внутренних органов с частотами внешних сил. Область резонанса для головы в положении сидя при вертикальных вибрациях располагается в зоне между 20…30 Гц, при горизонтальных – 1,5…2 Гц.

Особое значение резонанс приобретает по отношению к органу зрения. Расстройства зрительных восприятий проявляются в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов, расположенных в грудной клетке и брюшной полости, резонансными являются частоты 3…3,5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4…6 Гц.

Вибрационная патология стоит на втором месте (после пылевых) среди профессиональных заболеваний. Рассматривая нарушения состояния здоровья при вибрационном воздействии, следует отметить, что частота заболеваний определяется величиной дозы, а особенности клинических проявлений формируются под влиянием спектра вибрации. Выделяют три вида вибрационной патологии: от воздействия общей, локальной и толчкообразной вибраций.

У рабочих вибрационных профессий отмечены головокружения, расстройство координации движений, симптомы укачивания, вестибуловегетивная неустойчивость. Нарушение зрительной функции проявляется сужением и выпадением отдельных участков полей зрения, снижением остроты зрения, иногда до 40 %, субъективно – потемнением в глазах. Под влияние общих вибраций отмечается снижение болевой, тактильной и вибрационной чувствительности. Особенно опасна толчкообразная вибрация, вызывающая микротравмы различных тканей с последующими реактивными изменениями. Общая низкочастотная вибрация оказывает влияние на обменные процессы, проявляющияся в изменении углеводного, белкового, ферментного, витаминного и холестеринового обменов, биохимических показателей не столько от уровня, сколько от дозы (эквивалентного уровня) вибрации в течение рабочей смены. Преимущественное значение имеет время непрерывного контакта с вибрацией и суммарное время воздействия вибрации за смену. У формовщиков, бурильщиков, заточников, рихтовщиков при среднечастотном спектре вибраций заболевание развивается через 8…10 лет работы. Обслуживание инструмента ударного действия (клепка, обрубка), генерирующего вибрацию среднечастотного диапазона (30…125 Гц), приводит к развитию сосудистых, нервно-мышечных, костносуставных и других нарушений через 12…15 лет. При локальном воздействии низкочастотной вибрации, особенно при значительном физическом напряжении, рабочие жалуются на ноющие, ломящие, тянущие боли в верхних конечностях (часто по ночам). Одним из постоянных симптомов локального и общего воздействия является расстройство чувствительности. Наиболее резко страдают вибрационная, болевая и темпераментная чувствительность.

Вибрация характеризуется частотой и амплитудой колебаний, а также их производными – скоростью и ускорением.

Частота – число полных колебаний, совершаемых в 1с. Различают: 1) инфразвуковые частоты – от 1 до 16 Гц; 2) звуковые частоты – от 16 до 20 000 Гц; 3) ультразвуковые ча-

стоты – более 20 000 Гц.

Несмотря на то, что в условиях производства вибрация чаще всего представлена сочетанием колебаний различной частоты, необходимо учитывать возможность преобладания частот вполне определенного диапазона. Реакция организма на различные частоты колебаний неодинакова. Так, для вибрационной болезни, обусловленной преимущественным воздействием высокочастотной (свыше 30 Гц) вибрации, характерно преобладание сосудистых реакций. У больных, работающих в контакте с низкочастотной вибрацией, более выражен болевой синдром, сочетающийся с расстройствами чувствительности, изменениями в мышцах и суставах.

На основании экспериментальных и клинических данных установлено, что частота вибрации выше или ниже диапазона 32 – 250 Гц не вызывает ангиоспастического эффекта, занимающего существенное место в патогенезе вибрационной болезни. Наиболее неблагоприятен контакт с вибрацией частотой 100 – 200Гц.

Амплитуда колебания существенно влияет на степень воздействия вибрации. Так, при больших амплитудах колебательных движений одной и той же частоты влияние вибрации на организм выражено более значительно.

Ускорение – величина, характеризующая нарастание амплитуды колебательного движения, имеет огромное значение при развитии ответных реакций на вибрацию. Так, при полетах, особенно связанных с освоением космического пространства, качании на качелях, морской качке и т. П., относительно небольшая частота вибрации сочетается со значительным ее ускорением, определяющим периодические изменения массы тела, возможные перемещения массы крови и перезагрузку вестибулярного аппарата.

Особенности патологического процесса, обусловленного вибрацией, зависят не только от ее физических свойств. Существенное значение имеет характер производственного процесса. Следует учитывать, что воздействию вибрации нередко сопутствуют такие факторы, как статическое напряжение мышц, сила обратной отдачи, вынужденное положение тела, охлаждение рук вследствие подачи холодной струи воздуха, интенсивный шум.

Различают местную вибрацию, действующую преимущественно на руки рабочего, соприкасающиеся с вибрирующим инструментом, и общую вибрацию, оказывающую значительное равномерное влияние на весь организм. Местная вибрация может иметь место при использовании рабочими пневматических и электрических инструментов. Влияние общей вибрации возможно в случаях пребывания рабочих непосредственно на вибрирующих установках, а также в случаях передачи вибрации от работы двигателей, машин и оборудования через пол и другие элементы здания. Деление вибрации на общую и локальную весьма условно, так как работа с пневматическими инструментами не исключает возможности распространения вибрации на плечевой пояс и более отдаленные участки тела вплоть до нижних конечностей, включая стопы.

В условиях производства воздействие вибрации часто сочетается с интенсивным шумом. Однако и сама по себе вибрация, особенно больших частот, может оказать на слуховой аппарат влияние, близкое к действию шума. Радикулиты и радикулоневриты, встречающиеся при вибрационный болезни, наряду с непосредственным воздействием вибрации, могут быть обусловлены тяжелой нагрузкой на позвоночник, перенапряжением мышц-разгибателей, отчасти сопутствующим влиянием низкой температуры окружающего воздуха.

К начальным проявлениям болезни относится снижение мышечной силы при отчетливом изменении биоэлектрической активности мышц, причем не только на рабочей, но и на интактной конечности. В дальнейшем развивается атрофия ряда мышечных групп конечностей.

Изменения в костях возникают довольно рано, на второй – пятый год работы с вибрирующими инструментами. В развитии патологических изменений в костно-суставном аппарате наряду с нервно-сосудистыми и трофическими расстройствами общего характера существенное значение имеют непосредственное местное влияние вибрации, сила обратной отдачи и статическое напряжение.

Структурным изменениям костной ткани предшествуют отклонения в минеральном и ферментном обменах. Под влиянием вибрации в костной ткани изменяется дисперсность коллоидов, и эта ткань относительно быстро утрачивает способность связывать соли кальция.

Поражение костно-суставного аппарата, обусловленное воздействием вибрации, чаще встречается у бурильщиков, отбойщиков, клепальщиков, водителей гоночных машин. Оно характеризуется некоторым своеобразием, которое определяется особенностями производственного процесса и отдельных профессий.

Серьезное значение в развитии висцеральной патологии имеет и непосредственное воздействие вибрации на внутренние органы. Многие технологические процессы сопряжены с прямым воздействием вибрации на область груди и нижнюю часть живота, например в случаях, когда упор инструмента или обрабатываемой детали приходится на область эпигастрия. Развитие ответных реакций сердца и желудка на воздействие вибрации в значительной мере объясняется множеством расположенных в этих зонах рецепторов.

Вибрация оказывает выраженное влияние на ритм сердца и трофику миокарда, секреторную и моторную деятельности желудка. При непосредственном воздействии вибрации на область желудка отмечается выраженное повышение желудочной секреции, тонуса и перистальтики.

Клиническая картина вибрационной болезни характеризуется довольно многообразной симптоматикой и вариабельностью проявлений. Определенное значение имеют присущие различным профессиональным группам специфические особенности условий труда. При воздействии низкочастотной вибрации возникают более грубые изменения мышечной системы и чувствительности. При высококачественных спектрах на первый план выступают выраженные сосудистые расстройства. Известно, что степень чувствительности человека к вибрации зависит от положения тела. Так, в положении стоя отмечается большая чувствительность к вертикальным колебаниям, в положении лежа – к горизонтальным. Значительную роль играют так называемые дополнительные компоненты условий труда: охлаждение, микротравматизация, вынужденное положение, физическое перенапряжение. Перечисленные факторы могут определить некоторое своеобразие клинической картины. Выделяют отдельные, присущие некоторым профессиональным группам, клинические синдромы, обусловленные как воздействием самой вибрации, так и сопутствующими факторами. В клинике профессиональных заболеваний различают следующие формы вибрационной болезни.

1. Вибрационная болезнь, обусловленная воздействием так называемой локальной вибрации. Развитие ее характерно для бурильщиков, забойщиков, обрубщиков, шлифовальщиков, точильщиков и рабочих некоторых других профессий, выполняющих работу с помощью ручного механизированного инструмента.

2. Вибрационная болезнь, обусловленная воздействием комбинированной вибрации. Иногда эту форму называют вибрационной болезнью бетонщиков. Заболевание встречается при работе на виброуплотнителях и других аналогичных установках.

3. Вибрационная болезнь от воздействия общей вибрации, сочетающейся с толчками. Заболевание встречается у машинистов, кондукторов, трактористов, комбайнеров, водителей некоторых видов транспорта.

Приведенное подразделение вибрационной болезни носит несколько условный характер. Как правило, на производстве организм подвергается воздействию различных видов вибраций.

ЛОКАЛЬНАЯ ВИБРАЦИЯ

Вибрационная болезнь обусловлена воздействием так называемой локальной вибрации. Заболевание встречаются у рабочих, использующих ручные вибрирующие инструменты: пневматические молотки, дрели, вибросверла, виброинструменты при шлифовке, полировке, клепке и других работах. В связи с характером работы нередко все явления развиваются в левой руке. Первые признаки заболевания чаще всего появляются через 5 –  7 лет от начала контакта с вибрацией.

В клинической картине преобладают симптомы, связанные с нарушением тонуса периферических сосудов и трофики тканей опорно-двигательного аппарата верхних конечностей. Болезнь характеризуется преимущественным развитием местных симптомов ангионевроза и полиневрита на фоне функциональных расстройств центральной нервной системы. Процесс развивается исподволь.

В клиническом течении этой формы вибрационной болезни различают четыре стадии. Первая стадия – стадия начальных проявлений. Характеризуется малой выраженностью симптомов. Процесс еще вполне обратим. Характерны жалобы на нерезкие боли, чувство онемения пальцев рук, кистей, несколько повышенную раздражительность, быструю утомляемость.

Вторая стадия – стадия дистрофических расстройств. Наблюдается выраженная симптоматика. Боли и парестезии в руках приобретают стойкий и интенсивный характер, нередко с отчетливым усилением в ночные часы. Появляется повышенная утомляемость рук. Изредка во время работы возникает приступообразная слабость пальцев и кистей, вследствие которой больные могут ронять инструменты, непроизвольно выпуская их из рук. Периодически отмечаются судороги в мелких мышечных группах кистей. Кисти рук становятся цианотичными, холодными на ощупь, с повышенным потоотделением.

Гиперестезия ладонной поверхности пальцев, отмечаемая в ранние сроки заболевания, сменяется уменьшением чувствительности на всей поверхности кисти и частично предплечья по типу низких или даже высоких перчаток. Нарастают расстройства вибрационной, болевой, тактильной и температурной чувствительности. Снижение болевой чувствительности постепенно распространяется на всю кисть и нижнюю треть предплечья. Аналогичные расстройства могут развиваться на нижних конечностях. Нередко в мышцах плечевого пояса, предплечий развивается хронический миозит очагового характера с возможным последующим замещением участков воспаления фиброзной тканью. В мышечных группах плечевого пояса пальпируются болезненные валикообразные, напоминающие узлы, участки. Рефлекторная возбудимость мышц повышена.

При капилляроскопии на бледном или цианотичном фоне ногтевого ложа выявляется спастическое состояние капилляров.

Третья стадия – стадия необратимых органических изменений. Характеризуется выраженными сосудистыми расстройствами, значительными изменениями мышц, костей и суставов. Как правило, третья стадия заболевания развивается у лиц со значительным стажем работы в контакте с высокоили низкочастотной вибрацией, сочетающейся со значительной отдачей. Больных беспокоят интенсивные боли в костях рук с иррадиацией вплоть до верхних отделов плечевого пояса. Характерны жалобы на головную боль, нарушения сна, повышенную раздражительность, быструю утомляемость, восприимчивость к низкой температуре. Характерным симптомом является чувство онемения пальцев рук при мытье их в холодной водой или при общем охлаждении тела.

Объективно сосудистые расстройства проявляются приступами резкого побеления пальцев. В основе симптома лежит выраженное спастическое состояние сосудов. Эпизоды резкого побеления одного, двух или нескольких пальцев, а в тяжелых случаях почти всей кисти, как правило, возникают при общем переохлаждении, контакте рук с холодными предметами или механическом раздражении кожи. Наиболее часто симптом

«мертвых пальцев» развивается с поражением третьего и четвертого, реже второго и пятого пальцев. Следует отметить, что у одного и того же больного могут быть приступы то побеления, то посинения пальцев.

Сосудистые расстройства относятся к наиболее ярким проявлениям вибрационной болезни. Развитие их может иметь место на обеих руках, но иногда возможны асимметричные формы в связи с большим воздействием вибрации на одну из конечностей. В этих случаях на руке, подвергающейся большему воздействию, описанные выше симптомы появляются раньше и выражены резче. Могут наблюдаться судороги мелких мышечных групп кистей рук и пальцев. При объективном обследовании отмечается резко измененный внешний вид кистей рук, которые имеют отечный, багрово-цианотичный цвет. Концевые фаланги нередко утолщены по типу «барабанных палочек». Возможны трофические изменения ногтей, деформация пальцев и суставов.

Расстройства чувствительности носят сегментарный характер по типу «куртки» и «полукуртки», а в дистальных отделах нижних конечностей – по типу «носков». Нарушение болевой чувствительности в дистальных отделах рук может достигать полной анестезии.

Четвертая стадия – стадия дистрофических изменений и генерализации процесса. В современных условиях она встречается очень редко. Проявления болезни характеризуются весьма тяжелой клинической симптоматикой. Вовлечение в процесс диэнцефальных областей с вегетативными центрами, высших отделов центральной нервной системы, обеспечивающих регуляцию сосудистого тонуса, обуславливает генерализованный характер сосудистых расстройств.

Характерны ангиоспастические кризы, которые могут протекать с явлениями коронарных и ярко выраженных церебральных расстройств. Наблюдаются головная боль, приступы головокружений с тошнотой, нарушениями координации, напоминающими синдром Меньера, потерей сознания по типу обморочных состояний. В ряде случаев возникают кризы, протекающие с болями в области сердца, за грудиной по типу стенокардии. При объективном обследовании выявляются резко выраженные нарушения чувствительности, обусловливающие сходство заболевания с сирингомиелией. Этой стадии заболевания присуща полная утрата трудоспособности при малой обратимости изменений.

КОМПЕНСИРОВАННАЯ ВИБРАЦИЯ

Компенсированная вибрация – абортивная, или компенсированная, форма вибрационной болезни. Заболевание обусловлено воздействием преимущественно местной вибрации при отсутствии резко выраженной обратной отдачи, значительного мышечного напряжения и охлаждения рук. Встречается у рабочих, использующих малогабаритные шлифовальные установки вращательного действия с частотой 150 – 200 Гц. Люди с хорошо развитой мышечной системой при устойчивой уравновешенности нервных процессов в течение многих лет могут продолжать свою деятельность без каких-либо серьезных расстройств здоровья. Однако в ряде случаев, как правило, при длительном стаже работы появляются симптомы вибрационной болезни относительно мягкого течения. Болезнь проявляется склонностью к эпизодически возникающим спазмам периферических сосудов фаланг кистей рук. Вне такого приступа больные чувствуют себя практически здоровыми и сохраняют трудоспособность, жалоб на боли в конечностях они обычно не предъявляют, отсутствует и яркая симптоматика астено-невротического синдрома.

Изменение кожной болевой чувствительности выражено весьма умеренно либо отсутствует. Как правило, признаки трофических расстройств не наблюдаются. Вместе с тем при капилляроскопии выявляются присущие начальным стадиям вибрационной болезни изменения, которые наряду с положительной холодовой пробой, локальным снижением вибрационной, кожной и болевой чувствительности, при наличии соответствующих клинических проявлений заболевания позволяют установить диагноз этой формы вибрационной болезни.

КОМБИНИРОВАННАЯ ВИБРАЦИЯ

Комбинированная вибрация – вибрационная болезнь, обусловленная комбинированным воздействием локальной и общей вибраций. Вибрационная болезнь этого типа развивается у рабочих, которые подвергаются одновременному воздействию общей и локальной вибраций. Так, при работе на вибрирующих площадках, виброуплотнителях бетона, у бурильщиков шахт с использованием вертикального бурения помимо воздействия на организм общей вибрации имеет место преимущественное ее воздействие на ноги. Признаки заболевания могут появляться значительно раньше, чем при воздействии местной вибрации (уже через 1–2 года).

Вибрационную болезнь, обусловленную воздействием общей вибрации, выделяют как особую форму патологии, наблюдаемую у шоферов тяжелых и гоночных машин, кондукторов, трактористов, водителей бульдозеров, рабочих производства сборных железобетонных конструкций.

В климатической картине преобладают нарушения со стороны центральной нервной системы. Больные предъявляют жалобы на головную боль, головокружение, шум в ушах, сонливость. Нередко они ощущают боли в икроножных мышцах, в области поясницы, мышечных группах спины. Уже в ранних стадиях заболевания довольно характерны явления пассивного торможения, повышенной раздражительности, составляющие синдром так называемой раздражительной слабости.

Значительные отклонения отмечаются в функциональном состоянии вегетативной нервной системы, вестибулярного аппарата, периферических сосудов. Расстройства сосудистой регуляции обусловливают спастикотоническое состояние периферических сосудов, неустойчивость артериального давления.

Изменяется кожная болевая и температурная чувствительность, снижаются сухожильные рефлексы. Имеют место нестойкие нарушения координации, сочетающиеся с резко выраженным тремором пальцев рук. У лиц, подвергающихся общей вибрации в положении сидя, возможно развитие дизурических явлений.

В ряде случаев нарушается зрение. Колебания глазного яблока во время вибрации сопряжены со смещением видимых объектов на сетчатке. Нарушение физиологической фиксации глаза особенно резко выражено при воздействии вертикальной вибрации на сидящего человека, что обусловливает снижение остроты зрения. Довольно характерно, особенно для шоферов крупных грузовых машин и кондукторов в поездах дальнего следования, развитие соляритов, функциональных расстройств желудка. Весьма часты у больных этой группы радикулиты. Изменения в костной ткани позвоночника вызываются рядом факторов.

Воздействие вибрации сочетается с большой нагрузкой на спину водителя крупных машин. Сильное напряжение прямых мышц спины при отсутствии опоры, резких толчках и постоянной вибрации приводит к деструктивным изменениям в позвоночнике, вторичным радикулитам. Повреждение тел позвонков, межпозвоночных дисков и связочного аппарата чаще всего происходит в люмбальной области.

Таким образом, при действии на организм общей вибрации страдает в первую очередь нервная система и анализаторы: вестибулярный, зрительный, тактильный. Вибрация является специфическим раздражителем для вестибулярного анализатора. У рабочих вибрационных профессий отмечены головокружения, расстройство координации движений, симптомы укачивания, вестибуловегетативная неустойчивость. Нарушение зрительной функции проявляется сужением и выпадением отдельных участков полей зрения, снижением остроты зрения, иногда до 40 %, субъективно – потемнением в глазах. Влиянию локальной вибрации подвергаются главным образом люди, работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кисти, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов. Колебания низких частот вызывают резкое снижение тонуса капилляров, а высоких частот – спазм сосудов. Сроки развития периферических расстройств зависят не столько от уровня, сколько от дозы вибрации в течение рабочей смены. К факторам производственной среды, усугубляющим вредное воздействие вибрации на организм, относятся чрезмерные мышечные нагрузки, неблагоприятные микроклиматические условия, особенно пониженная температура, шум высокой интенсивности, психоэмоциональный стресс. Охлаждение и смачивание рук значительно повышает риск развития вибрационной болезни за счет усиления сосудистых реакций. При совместном действии шума и вибрации наблюдается взаимное усиление эффекта в результате его суммации, а возможно, и потенцирования.

МЕТОДЫ СНИЖЕНИЯ ВИБРАЦИИ

Разработка мероприятий по снижению производственных вибраций должна производиться одновременно с решением основной задачи современного машиностроения комплексной механизации и автоматизации производства. Введение дистанционного управления цехами и участками позволит полностью решить проблему защиты от вибраций.

В неавтоматизированных производствах осуществляют следующие методы по уменьшению вибраций: в источнике возникновения, по снижению их на путях распространения, по снижению вредного воздействия вибраций на работающих путем соответствующей организации труда, а также применения средств индивидуальной защиты и лечебнопрофилактических мероприятий.

Методы борьбы с вибрацией базируются на анализе уравнений, описывающих колебания машин и агрегатов в условиях производства. Эти уравнения сложны, так как любой вид технологического оборудования, так же как и его отдельные конструктивные элементы, является системой со многими степенями подвижности и обладает рядом резонансных частот.

Прежде всего следует снижать вибрацию вблизи резонансов. В этом случае задача упрощается, так как машины и агрегаты можно рассматривать как колебательные системы с одной степенью свободы. При определении основных направлений борьбы с вибрацией следует ограничиться анализом уравнений вынужденных колебаний такой системы, которую можно представить в виде массы, покоящейся па пружине, другой конец ее жестко закреплен. Система, кроме того, обладает трением. В этой системе с сосредоточенными параметрами элементы упругости, массы и трения отделены друг от друга. Для простоты анализа будем считать, чти на систему воздействует переменная возмущающая сила, изменяющаяся по синусоидальному закону. С увеличением частоты со сопротивление системы г возрастает и виброскорость снижается. Система как бы стремится к неподвижности. Систему с инерционным сопротивлением широко используют при защите от вибраций в различных областях машиностроения.

Таким образом, из проведенного анализа решения уравнения вынужденных колебаний системы с одной степенью свободы следует, что основными методами борьбы с вибрациями машин и оборудования являются:

1) Снижение вибраций воздействием на источник возбуждения (посредством снижения или ликвидации вынуждающих сил);

2) Отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы;

3) Вибродемпфирование — увеличение механического импеданса колеблющихся конструктивных элементов путем увеличения диссипативных сил при колебаниях с частотами, близкими к резонансным;

4) Динамическое гашение колебаний — присоединение к защищаемому объекту системы, реакции которой уменьшают размах вибрации объекта в точках присоединения системы;

5) Изменение конструктивных элементов машин и строительных конструкций. Методы вибрационной защиты могут быть также разделены на методы, снижающие параметры вибраций воздействием на источник возбуждения, и методы, снижающие параметры вибраций на путях ее распространения от источника. Последние включают методы 2, 3, 4 приведенной выше классификации, а также виброизоляцию и применение средств индивидуальной защиты. Приведенная классификация методов борьбы с вибрацией на путях распространения справедлива для любого вида возбуждения вибраций: силового, кинематического, параметрического и т. Д. Возможна также классификация методов борьбы с вибрацией по наличию контакта оператора с вибрирующим объектом.

Борьба с вибрацией воздействием на источник возбуждения. При конструировании машин и проектировании технологических процессов предпочтение должно отдаваться таким кинематическим и технологическим схемам, при которых динамические процессы, вызванные ударами, резкими ускорениями и т. П., были бы исключены или предельно снижены. Так, замена кулачковых и кривошипных механизмов равномерно вращающимися, а также механизмами с гидроприводами в значительной мере способствует снижению вибраций. К этому же приводит замена ковки и штамповки прессованием, ударной правки — вальцовкой, пневматической клепки и чеканки — гидравлической клепкой и сваркой.

В настоящее время разработаны модификации известных технологических процессов, которые позволяют снижать вибрацию (прессование на гидравлических прессах вместо обработки на листоштамповочных молотах, применение гвоздильных прессов вместо гвоздильных станков и т. Д.). При конструировании машин и агрегатов необходимо изыскивать конструктивные решения для безударного взаимодействия деталей  и плавного обтекания их воздушными потоками (скошенные штампы у кузнечнопрессового оборудования, ножевые валы с винтообразной режущей кромкой станков, замена трансмиссионных приводов машин и агрегатов электродвигателями и т. Д.). Для снижения уровня вибраций редукторов целесообразно применять шестерни со специальными видами зацеплений — глобоидным, шевронным, двухшевронным, конхоидальным вместо обычных шестерен с прямым зубом. Большое значение при этом имеет повышение класса точности обработки и уменьшение шероховатости поверхности шестерен. С этой же целью производят подбор зубчатых пар, что позволяет дополнительно снизить уровень вибраций на 3—4 дб.

Большое значение для снижения негативного влияния вибрации имеет выбор режимов работы оборудования. Одно из основных требований при приёме технических систем в эксплуатацию, состоит в том, что подбор рабочих режимов должен осуществляться с учетом соблюдения требований безопасности на рабочих местах.

Причиной низкочастотных вибраций насосов, компрессоров, двигателей является неуравновешенность вращающихся элементов. Это относится к современным быстроходным машинам относительно небольшой массы с уменьшенной жесткостью основных несущих деталей. Действие неуравновешенных динамических сил усугубляется плохим креплением деталей, их износом в процессе эксплуатации. Устранение неуравновешенности вращающихся масс достигается балансировкой.

При кинематическом возбуждении вибраций применяются следующие методы борьбы, снижающие вибрацию воздействием на источник возбуждения:

– изменение конструктивных элементов машин и строительных конструкций;

– уменьшение неровностей профиля пути самоходных и транспортных машин;

– повышение нивелирующей способности опорных элементов самоходных и транспортных машин.

Отстройка от режима резонанса. Для ослабления вибраций существенное значение имеет исключение резонансных режимов работы, т. Е. Отстройки собственных частот агрегата и его отдельных узлов и деталей от частоты вынуждающей силы. Собственные частоты отдельных конструктивных элементов определяют либо расчетным путем, либо экспериментально на специальных стендах. В первом случае расчет производится по известному значению массы и жесткости системы.

Резонансные режимы при работе технологического оборудования устраняют двумя путями: либо изменением характеристик системы (массы или жесткости), либо установлением нового рабочего режима (отстройка от резонансного значения угловой частоты вынуждающей силы). Второй метод осуществляют на стадии проектирования, так как в условиях эксплуатации режимы работы определяются условиями технологического процесса. Жесткость системы изменяют введением в конструкцию ребер жесткости или изменением ее упругих характеристик.

Вибродемпфирование. Это процесс уменьшения уровня вибраций защищаемого объекта путем превращения энергии механических колебаний данной колеблющейся системы в тепловую энергию.

Увеличение потерь энергии в системе может производиться: использованием в качестве конструкционных материалов с большим внутренним трением, нанесением на вибрирующие поверхности слоя различных упруговязких материалов, обладающих большими потерями на внутреннее трение, применением поверхностного трения (например, при колебаниях изгиба двух скрепленных и плотно прилегающих друг к другу пластин), переводом механической колебательной энергии в энергию токов Фуко, или электромагнитного поля.

Значение параметра р для основных конструкционных материалов в машиностроении (чугунов и сталей) составляет 0,001—0,01. Как следствие этого, уровни вибрации большинства конструкций в машиностроении достаточно велики. Велика и их вибропроводность.

Значительно большее внутреннее трение имеют сплавы на основе систем Сu — Ni, Ni — Тi, Ni — Со. В зависимости от амплитуды напряжения в этих сплавах составляет 0,02—0,1. Большим затуханием колебаний обладают (после закалки) сплавы марганца с содержанием 15—20% меди и магниевые сплавы. Детали из этих сплавов имеют меньшую, чем чугуны и стали, вибропроводность. Затухание колебаний в металлах резко увеличивается при повышении температуры.

Вибродемпфирование может быть осуществлено путем использования композиционных материалов, в частности, двухслойных материалов сталь-алюминий, сталь-медь.

С точки зрения снижения вибраций наиболее предпочтительным является использование в качестве конструкционных материалов пластмасс, дерева, резины. Так, в тихоходных редукторах применяют шестерни из капрона, текстолита и дельта-древесины. В некоторых случаях возможно использование шестерен из твердой резины. В результате происходит снижение вибраций оснований фундаментов машин, а следовательно, снижение вибраций рабочих мест.

Широкое применение находят пластмассы при изготовлении технологической оснастки металлорежущих станков: кондукторов, кондукторных втулок, подшипников, зажимных устройств и т. Д.

Использование пластмасс в качестве конструкционных материалов позволяет снизить уровень вибрации по виброскорости в широкой полосе средних и высоких частот на 8—10 дб.

Когда применение полимерных материалов в качестве конструкционных не представляется возможным, для снижения вибраций используют вибродемпфирующие покрытия. Действие покрытий основано на ослаблении вибраций путем перевода колебательной энергии в тепловую при деформациях покрытий. Эффективное действие покрытий наблюдается на резонансных частотах элементов конструкций агрегатов и машин. В зависимости от значения динамического модуля упругости покрытия подразделяют на жесткие (Е= 108—109 Па) и мягкие (107 Па). Действие покрытий первой группы проявляется главным образом на низких и средних частотах, второй — на высоких.

На эффективность жестких покрытий в большой мере оказывает влияние жесткость материала. Чем она выше, тем больше потери механической энергии в системе. Покрытия этого типа рекомендуется выполнять в виде многослойной конструкции. Последние в сравнении с однослойными более эффективны. Особый интерес представляют покрытия из слоя вязкоупругого материала (твердой пластмассы, рубероида, изола, битумизированного войлока) и слоя фольги, увеличивающей жесткость покрытия. Коэффициент потерь таких слоистых вибродемпфирующих покрытий составляет 0,15— 0,40. Наибольшее распространение из покрытий такого рода получили материалы на основе изола (фольгоизол, стеклоизол, гидроизол). Возможно использование одного вязкого материала (покрытие «Радуга») либо одной фольги на клеевой основе (покрытие СКЛ-25).

В качестве жестких возможно применение металлических покрытий (на основе алюминия, меди, свинца, олова), а также гальванопокрытий, однако их эффективность ниже, чем слоистых покрытий.

В качестве мягких вибродемпфирующих покрытий используют мягкие пластмассы, материалы типа резины (например, пеноэласт, технический винипор), пластические материалы типа поливинилхлоридного пластика, пенопласт ПХВ-9 и др. Коэффициент потерь этих покрытий 0,05—0,5.

Листовые мягкие вибродемпфирующие покрытия широко применяют в машиностроении, в частности, для снижения уровня вибраций и шума при ручной правке, обработке тонкостенных конструкций малой жесткости, на некоторых типах станков. Однако эксплуатационные качества этих покрытий не всегда удовлетворительны. Так, не представляется возможным обеспечить качественное соединение покрытий с обрабатываемой поверхностью, если последняя имеет сложную конфигурацию. В этом случае используют мастичные покрытия. Наибольшее распространение получили мастики ВД17-58, ВД17-59 и ВД17-63, представляющие смесь синтетических смол и наполнителей, а также мастики “Антивибрит” на основе эпоксидных смол и др. Коэффициент потерь мастик составляет в большинстве случаев 0,3—0,45. Температура при эксплуатации 393—493 К. Мастики наносят непосредственно на элементы машин и агрегатов. Эти мастики имеют хорошую адгезию с основным конструкционным материалом. Вибродемпфирующие мастики широко применяют в машиностроении для снижения вибраций и шума вентиляционных систем, центробежных компрессоров, насосов,  трубопроводов и т. П.

Наибольший эффект вибродемпфирующие покрытия дают при условии, что протяженность вибродемпфирующего слоя соизмерима с длиной волны изгиба в материале конструкции. Это нужно учитывать при демпфировании низкочастотных колебаний, имеющих большую длину волны. Покрытия следует наносить в местах, где генерируется вибрация максимального уровня. Толшина вибродемпфирующих покрытий практически берется равной 2—3 толщинам элемента конструкции, на который оно наносится.

Хорошо демпфируют колебания смазочные материалы. Например, масляная ванна значительно снижает уровень вибраций зубчатых зацеплений редукторов, корпусов галтовочных барабанов. Слой смазочного материала между двумя сочлененными элементами устраняет возможность непосредственного их контакта и, следовательно, появление сил поверхностного трения, которые, как известно, могут быть причиной возбуждения вибраций.

Динамическое гашение вибрации. Чаще всего виброгашение осуществляют путем установки агрегатов на фундаменты. Массу фундамента подбирают таким образом, чтобы амплитуда колебаний подошвы фундамента в любом случае не превышала 0,1 — 0,2 мм, а для особо ответственных сооружений 0,005 мм. Для небольших объектов между основанием и агрегатом устанавливают массивную опорную плиту.

Одним из способов увеличения реактивного сопротивления колебательных систем является установка динамических виброгасителей. Наибольшее распространение в машиностроении получили динамические виброгасители, уменьшающие уровень вибраций защищаемого объекта за счет воздействия на него реакций виброгасителя. Динамические виброгасители представляют собой дополнительную колебательную систему с массой и жесткостью, собственная частота которой настроена на основную частоту колебаний данного агрегата, имеющего массу М и жесткость С.

Виброгаситель жестко крепится на вибрирующем агрегате, поэтому в нем в каждый момент времени возбуждаются колебания, находящиеся в противофазе с колебаниями агрегата.

Недостатком динамического виброгасителя является то, что он действует только при определенной частоте, соответствующей его резонансному режиму колебаний. Даже незначительные изменения частоты вибраций агрегата резко снижают эффективность действия виброгасителя, так как выводят его из резонансного режима работы. Такие виброгасители применяют в агрегатах, имеющих характерный постоянный по времени дискретный спектр вибраций, т. Е. В агрегатах с возмущающим воздействием практически одной частоты. Такие устройства устанавливают на турбогенераторах, силовых установках в судостроении.

Так как в динамических виброгасителях используется резонансный режим, следует в общем случае принимать во внимание силы трения в гасителе и в основной системе. У виброгасителя с трением полоса частот, в которой имеет место ослабление вибраций основной системы, значительно шире, чем у гасителя без трения, однако степень ослабления вибраций может быть несколько меньше, чем у описанного выше виброгасителя без трения.

Для снижения вибрации возможно также использование ударных виброгасителей, в которых осуществляется переход кинетической энергии относительного движения контактирующих элементов в энергию деформации с распространением напряжений из зоны контакта по взаимодействующим элементам. В результате энергия распределяется по объему соударяющихся элементов виброгасителя, вызывая их колебания и вместе с тем рассеяние энергии вследствие действия сил внешнего и внутреннего трения.

Тип виброгасителя выбирают в зависимости от частоты колебаний, которые должны быть снижены. Ориентировочно можно считать, что маятниковые ударные виброгасители применяют для гашения колебаний с частотой 0,4—2 Гц, пружинные — 2—10 Гц и плавающие — выше 10 Гц.

Из других типов виброгасителей следует отметить виброгасители камерного типа для превращения пульсирующего потока газа в равномерный. Такого рода виброгасители ставятся как на всасывающей, так и на нагнетательной стороне компрессоров и способствуют значительному снижению уровня вибраций трубопроводов и газопроводов. Аналогичные устройства применяют на гидроприводах.

Изменение конструктивных элементов машин и строительных конструкций для снижения вибрации на путях ее распространения производится чаще за счет увеличения жесткости системы (введения ребер жесткости). В последнем случае помимо изменения упругих свойств колебательных систем нарушается синфазность колебаний отдельных поверхностей, снижается амплитуда смещения отдельных точек. Это в значительной мере способствует снижению уровня вибрации и сопутствующего ей шума в дорезонансной области частот.

Виброизоляцияэто способ защиты заключающийся в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещаемых между ними. Виброизоляция осуществляется введением в колебательную систему дополнительной упругой связи, препятствующей передаче вибраций от машины — источника колебаний к основанию или смежным элементам конструкции; эта упругая связь может также использоваться для ослабления передачи вибраций от основания на человека либо на защищаемый агрегат.

Переменная сила, создаваемая машиной, имеет амплитуду. На основание, от которого машина отделена виброизоляцией, действует переменная вынуждающая сила Рт. Эффективность виброизоляции определяют коэффициентом передачи КП, который имеет физический смысл отношения амплитуды виброперемещения, виброскорости, виброускорения защищаемого объекта или действующей на него силы к амплитуде той же величины источника возбуждения при гармонической вибрации. Чем меньше значение этого соотношения, тем выше виброизоляция. КП в системах, где можно пренебречь трением, может быть рассчитан по формуле:

КП=Fmосн/Fmмаш.

Из формулы видно, что чем ниже собственная частота по сравнению с частотой вынуждающей силы, тем выше эффективность виброизоляции. При f<<fo вынуждающая сила действует как статическая и целиком передается основанию. При f=fo наступает резонанс, сопровождающийся резким возрастанием уровня вибраций. При f>(2fo)1/2, режим резонанса не осуществляется, значение КП равно единице, а при дальнейшем увеличении оно становится меньше единицы. Вследствие этого передача вибраций через виброизоляцию уменьшается.

Например, для ослабления общих вибраций в зоне обслуживания мощных дизелей в 100 раз (КП=0,01) собственная частота колебаний компрессора, установленного на виброизоляторы, должна быть в 10 раз меньше частоты возбуждающей силы.

Чем больше статическая осадка, тем ниже собственная частота и тем эффективнее виброизоляция. Однако это обстоятельство противоречит экономическим и в ряде случаев техническим требованиям, так как приводит к сложным и дорогостоящим конструкциям виброизоляторов с большими габаритами, а система на таких виброизоляторах нередко приобретает слишком большую подвижность по отдельным степеням свободы. Поэтому в данном случае, как и в ряде других, необходимо искать разумный компромисс между гигиеническими, техническими и экономическими требованиями. Таким образом, чем выше частота вибрации, тем легче осуществить виброизоляцию. Отсюда следует, что существует оптимальное соотношение между частотой возбуждения и собственной частотой колебаний системы.

Увеличение трения в системе виброизоляции снижает эффективность последней. Однако в машинах, которые при выходе на режим проходят режим резонанса, предусматривается введение демпфирования в конструкции виброизоляторов.

Кроме виброизоляторов, примером виброзащиты является установка гибких вставок в коммуникациях воздуховодов и в местах их прохождения через строительные конструкции, применение упругих прокладок в узлах крепления воздуховодов при монтаже, разделение гибкой связью перекрытий и несущих конструкций здания, устройство так называемых «плавающих» полов (настил пола отделяется от перекрытия упругими прокладками). Во всех случаях введение дополнительной упругой связи снижает передачу вибраций от источника смежным элементам конструкции (или грунту). Этот же принцип виброзащиты используют при конструировании ручного механизированного инструмента.

Промышленность выпускает ряд типов ручного механизированного инструмента с виброзащитными рукоятками, например, перфораторы с качающейся виброгасящей рукояткой. Принцип ее действия состоит в том, что она соединена с корпусом инструмента через упругую связь — систему шарнирно сопряженных элементов. Контакт этой системы с корпусом перфоратора осуществляется посредством эластичных резиновых колец. Такое конструктивное решение виброизоляции (многозвенная связь) обеспечило снижение уровня вибраций на рукоятке до требований действующих санитарных норм. Известны и другие типы внброзащиты ручного механизированного инструмента с использованием виброизоляции.

Для ослабления передачи вибраций по элементам конструкции практикуется установка виброзадерживающих масс (рис. 5).

Для виброизоляции стационарных машин с вертикальной вынуждающей силой в машиностроении чаще всего применяют виброизолирующие опоры типа упругих прокладок или пружин (рис. 6). Возможно использование их сочетания (комбинированные виброизоляторы).

Пружинные виброизоляторы по сравнению с прокладками имеют ряд преимуществ. Они могут применяться для изоляции колебаний как низких, так и высоких частот (обеспечивают любую деформацию), дольше сохраняют постоянство упругих свойств во времени, хорошо противостоят действию масел и температуры, относительно малогабаритны. Однако они могут пропускать колебания высоких частот, так как материал пружин (сталь) имеет малые внутренние потери, а в указанном диапазоне распологаются резонансные частоты пружин. Поэтому пружинные виброизоляторы в этом случае рекомендуется устанавливать на прокладки из упругих материалов типа резины комбинированный виброизолятор). При использовании виброизоляторов типа резиновых прокладок следует предусматривать меры для обеспечения деформации в горизонтальной плоскости. Для этого резиновые виброизоляторы должны либо иметь форму ребристых или дырчатых плит, либо разбиваться на ряд параллельно установленных виброизоляторов.

Для уменьшения передачи вибраций на руки работающих с ручным механизированным инструментом, а также для снижения вибраций основания некоторых видов машин вибрационного действия используют пневматические виброизоляторы.

Широкое распространение в промышленности получила так называемая активная виброзащита, которая предусматривает введение дополнительного источника энергии, осуществляющего обратную связь его от изолируемого объекта к системе виброизоляции, позволяющего регулировать по времени характеристики последней. Это приводит к быстрому затуханию колебаний в виброизолированной системе при внешних воздействиях.

Средства индивидуальной защиты от вибраций. Измерение вибраций и виброизмерительная аппаратура при работе с ручным механизированным электрическим и пневматическим инструментом применяют средства индивидуальной зашиты рук от воздействия вибраций. К ним относят рукавицы, перчатки, а также виброзащитные прокладки или пластины, которые снабжены креплениями в руке. Учитывая неблагоприятное воздействие холода на развитие виброболезни, при работе в зимнее время рабочих надо обеспечивать теплыми рукавицами.

В целях профилактики вибрационной болезни для работающих с вибрирующим оборудованием рекомендуется специальный режим труда. Так, при работе с ручными машинами, удовлетворяющими требованиям санитарных норм, суммарное время работы в контакте с вибрацией не должно превышать 7ч. Рабочей смены. При этом продолжительность одноразового непрерывного воздействия вибрации, включая микропаузы, входящие в данную операцию, не должна превышать для ручных машин 15—20 мин.

При таком режиме труда (если прочие факторы условий труда соответствуют санитарным нормам) рекомендуется устанавливать обеденный перерыв не менее 40 мин и два регламентированных перерыва (для активного отдыха, проведения производственной гимнастики по специальному комплексу и физиопрофилактических вроцедур): 20 мин через 1—2 ч после начала смены и 30 мин через 2 ч после обеденного перерыва.

Для работающих в условиях вибрации при наличии других неблагоприятных факторов (шума, температуры, вредных веществ, излучения и др.), превышающих санитарные нормы, режимы труда и отдыха должны устанавливаться на основе изучения изменения работоспособности, отражающей степень неблагоприятного воздействия всего комплекса факторов условий труда на организм человека.

При работе с вибрирующим оборудованием рекомендуется включать в рабочий цикл технологические операции, не связанные с воздействием вибрации.

Рабочие, у которых обнаружена вибрационная болезнь, временно, до решения ВТЭК, должны быть переведены на работу, не связанную с вибрацией, значительным мышечным напряжением и охлаждением рук.

При работе в условиях общей вибрации применяется спецобувь.





БАНКОВСКОЕ ДЕЛО
БУХГАЛТЕРСКИЙ УЧЕТ
БЮДЖЕТ И БЮДЖЕТНАЯ СИСТЕМА РФ
ВЫСШАЯ МАТЕМАТИКА, ТВ и МС, МАТ. МЕТОДЫ
ГУМАНИТАРНЫЕ НАУКИ
ДОКУМЕНТОВЕДЕНИЕ И ДЕЛОПРОИЗВОДСТВО
ДРУГИЕ ЭКОНОМИЧЕСКИЕ ДИСЦИПЛИНЫ
ЕСТЕСТВЕННЫЕ ДИСЦИПЛИНЫ
ИНВЕСТИЦИИ
ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ
МАРКЕТИНГ
МЕНЕДЖМЕНТ
МЕТ. РЕКОМЕНДАЦИИ, ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
МИРОВАЯ ЭКОНОМИКА И МЭО
НАЛОГИ И НАЛОГООБЛОЖЕНИЕ
ПЛАНИРОВАНИЕ И ПРОГНОЗИРОВАНИЕ
РАЗРАБОТКА УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ
РЫНОК ЦЕННЫХ БУМАГ
СТАТИСТИКА
ТЕХНИЧЕСКИЕ ДИСЦИПЛИНЫ
УПРАВЛЕНИЕ ПЕРСОНАЛОМ
УЧЕБНИКИ, ЛЕКЦИИ, ШПАРГАЛКИ (СКАЧАТЬ)
ФИНАНСОВЫЙ МЕНЕДЖМЕНТ
ФИНАНСЫ, ДЕНЕЖНОЕ ОБРАЩЕНИЕ И КРЕДИТ
ЦЕНЫ И ЦЕНООБРАЗОВАНИЕ
ЭКОНОМИКА
ЭКОНОМИКА, ОРГ-ЦИЯ И УПР-НИЕ ПРЕДПРИЯТИЕМ
ЭКОНОМИКА И СОЦИОЛОГИЯ ТРУДА
ЭКОНОМИЧЕСКАЯ ТЕОРИЯ (МИКРО-, МАКРО)
ЭКОНОМИЧЕСКИЙ АНАЛИЗ
ЭКОНОМЕТРИКА
ЮРИСПРУДЕНЦИЯ